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Abstract

Reinforcement learning studies how an agent should interact with an environment to maximize
its cumulative reward. A standard way to study this question abstractly is to ask how many
samples an agent needs from the environment to learn an optimal policy for a γ-discounted Markov
decision process (MDP). For such an MDP, we design quantum algorithms that approximate an
optimal policy (π∗), the optimal value function (v∗), and the optimal Q-function (q∗).

Problem Setup

We study an infinite-horizon discounted MDP, M , with a finite set, S, of states, where at each
state an agent can choose to take an action from a finite set, A, of actions. Upon taking an action
a ∈ A at state s ∈ S, the agent receives reward r[s, a] ∈ [0, 1] and transitions to a state s′ ∈ S with
some probability p(s′|s, a). The last parameter needed to specify M is the discount factor γ ∈ [0, 1),
which discounts the reward the agent receives at later time steps t by a factor of γt. Hence M is
conveniently summarized by a 5-tuple, M = (S,A, p, r, γ). For convenience, we write S := |S| and
A := |A|, the cardinalities of S and A respectively, and Γ := (1− γ)−1.

Given such an MDP, the agent’s goal is to choose actions to maximize its expected sum of
γ-discounted rewards over infinitely many time steps. Following standard practice, we assume the
agent has full knowledge of S, A, r, and γ, but not p at the outset. A primary objective is to
compute a deterministic policy π : S → A for the agent that specifies the action a = π(s) it should
take at s ∈ S to best achieve its goal with high probability.

For a given policy π : S → A, the value-function (or simply value) of π, vπ : S → [0,Γ], and the
Q-function of π, qπ : S ×A → [0,Γ], are defined by

vπ[s] = E

[ ∞∑

t=0

γtr[st, at]

∣∣∣∣∣ s0 = s, ∀i ≥ 0 : ai = π[si]

]
, and

qπ[s, a] = E

[ ∞∑

t=0

γtr[st, at]

∣∣∣∣∣ s0 = s, a0 = a, ∀i ≥ 1 : ai = π[si]

]
,

(1)

where the expectations are over the probabilistic state transitions, i.e., for all i ≥ 0, si+1 is sampled
from the distribution p(·|si, ai). It is known that any such MDP admits an optimal policy π∗ : S → A,
in the strong sense that vπ

∗
[s] ≥ vπ[s] and qπ

∗
[s, a] ≥ qπ[s, a] for all π ∈ Π, s ∈ S, and a ∈ A, where

Π is the space of all policies. It is common to write v∗ := vπ
∗

and q∗ := qπ
∗
.

∗Full paper presented at ICML 2021 and is available at http://proceedings.mlr.press/v139/wang21w.html
†University of Maryland
‡Microsoft Quantum and Microsoft Research
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Goal: Output
an ε-accurate
estimate of

Classical sample complexity Quantum sample complexity

Upper and lower bound Upper bound Lower bound

q∗ SAΓ3

ε2
SAΓ1.5

ε
SAΓ1.5

ε

v∗, π∗ SAΓ3

ε2
min{SAΓ1.5

ε , S
√
AΓ3

ε } S
√
AΓ1.5

ε

Table 1: Quantum computing allows for speedups in terms of the parameters ε, Γ := (1− γ)−1, and
A, but not S. All bounds are for maximum failure probability δ constant. There are constraints on
the ranges of ε for which these results are valid, for details, please refer to our full paper.

The goal of our work is to design algorithms that compute q∗, v∗, and π∗ using as few resources
as possible. By resource, we refer to the sample complexity, that is, the number of calls to the
unitary matrix G : CS ⊗ CA ⊗ CS ⊗ CJ → CS ⊗ CA ⊗ CS ⊗ CJ with

G : |s〉 ⊗ |a〉 ⊗ |0〉 ⊗ |0〉 7→ |s〉 ⊗ |a〉 ⊗
(∑

s′∈S

√
p(s′|s, a) |s′〉 ⊗ |vs′〉

)
, (2)

where 0 ≤ J ∈ Z is arbitrary and |vs′〉 ∈ CJ are arbitrary. G can be instantiated whenever we have
a (classical) computer simulator of the environment, for example, in the case of computer games.

Main Results

Table 1 summarizes our main results. The classical sample complexities have only recently been
completely characterized for all three quantities [LWC+20] for the full range of ε ∈ (0,Γ]. As the
table shows, for computing q∗, we construct a quantum algorithm that offers a quadratic speedup in
terms of Γ and ε. For computing v∗ and π∗, we construct a second quantum algorithm that offers
an additional quadratic speedup in terms of A at the expense of Γ. Our quantum algorithms can be
thought of as quantizations of (a combination of) the classical algorithms of [SWWY18, SWW+18].
We use quantum minimum finding [DH96] and quantum mean estimation [Mon15] to perform the
quantization which requires a delicate analysis. Conversely, we also prove quantum lower bounds
for computing q∗, v∗, and π∗. Our lower bounds show that our q∗ algorithm is optimal, that we
have optimal algorithms for v∗ and π∗ provided one of Γ or A is constant, but that there may still
be a faster quantum algorithm for v∗ and π∗. Our proof technique in fact allows us to reprove the
classical lower bounds in a qualitatively stronger way than existing bounds.

We remark that the time complexities of our quantum algorithms are the same as their sample
complexities up to log factors assuming that the generative model can be called in constant time
and that we have access to quantum random access memory (QRAM) [GLM08]. This is because
the classical algorithms of [SWWY18, SWW+18] that we quantize satisfies this property and the
quantum subroutines we use to quantize it also satisfy this property.

Quantum reinforcement learning is not new [DCLT08, DTB16, PDM+14, DTB17, JTPN+21].
However, ours is the first work to rigorously characterize the quantum complexity of the main tasks
in reinforcement learning, that of computing q∗, v∗, and π∗.
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Universal Compiling and (No-)Free-Lunch Theorems
for Continuous Variable Quantum Learning
Tyler Volkoff, Zoë Holmes, Andrew Sornborger
Los Alamos National Laboratory

Extended abstract
Quantum compiling, where a parameterized quantum circuit V (θ) is trained to learn a target

unitary U , is a fundamental primitive for quantum computing. It can be used to find optimal (i.e.
short-depth and noise-resistant) circuits to aid the implementation of larger algorithms. Or as a
tool, analogous to a quantum sensing protocol, to learn the dynamics of an unknown experimental
system (see Fig. 1a). In this presentation, we will introduce algorithms for continuous-variable (CV)
variational quantum compiling which are motivated by extending the “no-free-lunch” theorems of
supervised learning theory to the quantum CV setting. These algorithms utilize readily available
Gaussian resources, such as coherent states of varying intensities and two-mode squeezed states
with varying entanglement. We further prove that our algorithms are trainable, thereby providing
a workaround to obstructions to scalability such as the barren plateau phenomenon that plagues
the finite dimensional setting [MBS+18].

To illustrate the connection between variational quantum compiling and quantum no-free-lunch
theorems, consider the task of learning a unitary U on a d-dimensional Hilbert space. By con-
sidering a set S of training states of the form U ⊗ IR|ψr

TMSS(r, φj)〉, where |ψr
TMSS(r, φj)〉 ∝∑r−1

n=0(tanh r)neinφj |n〉 ⊗ |n〉 are truncated two-mode squeezed states with random phase φj and
Schmidt rank r < d, the following quantum no-free-lunch theorem applies [SCH+20]:

ES(EU (RU (VS))) = 1− r2|S|2 + d+ 1

d(d+ 1)
. (1)

Here VS is the approximation to U output by the learning algorithm when trained on S, and RU (VS)
is the risk function. We chose the truncated two mode squeezed states so that training on Gaussian
states is obtained as r→∞. If r = cd for any c < 1, then a training set S of cardinality 1 allows to
get the expected risk to 1 − c in the d → ∞ limit. That is, a single training state with maximum
entanglement dimension can be used to perfectly learn an unknown unitary U .

This fact motivates the introduction of the following faithful cost function for CV variational
compiling,

CLE-TMSSr
(V (θ), U) := 1− |〈ψmTMSS(r)|UV (θ)† ⊗ IB|ψmTMSS(r)〉|2 . (2)

Here the 2m-mode two-mode squeezed state on register AB is defined by

|ψmTMSS(r)〉 := lim
r→∞

m⊗

j=1

|ψr
TMSS(r)〉AjBj . (3)

The cost function (3) can be computed with a simple, depth 6 CV circuit that utilizes only photon
number detection (Fig. 1b). We further introduce a local version of (3) for which the gradient
goes to zero subexponentially in the number m of modes and therefore does not exhibit a “barren
plateau landscape”(3).

This presentation will also detail how an analogous, but fully infinite dimensional, chain of
reasoning can produce an alternative algorithm for CV compiling that, in principle, does not require
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Figure 1: Here we sketch (a) an experimental circuit to learn the unitary U implemented by a novel
optical material (shown in orange) by training a parameterised quantum circuit V †(θ) implemented
on an optical quantum computer (shown in grey). The specific circuits to compute our proposed
costs Eq (2) and Eq. (5) are shown in (b) and (c) respectively.

entanglement. Specifically, we develop a CV no-free-lunch theorem for learning m-mode linear
optical operations via learning their corresponding orthogonal matrix O. We derive the equality

ES(EO(RO(TS))) =
1

2
− |S|

4m
, (4)

which gives the expected risk (averaged over all possible orthogonal matrices and training sets
consisting of |S| coherent state training pairs) in terms of the number of modes m of the CV
system and amount of training data |S|.

This result motivates an alternative faithful cost in terms of the fidelity between a coherent
state acted on by U and a coherent state acted on by V averaged over |S| coherent states with
energy less that E, i.e. the cost

CACSE (V,U) = 1− 1

|S|

|S|∑

j=1

∣∣〈αj |V †U |αj〉
∣∣2 (5)

where ‖αj‖2 < E for all j. This can be computed using the non-entangling circuit shown in Fig.
1(c). Eq. (4) implies that computing this cost function for |S| = 2m coherent states is sufficient to
faithfully compile m-mode linear optical unitaries, which is consistent with the intuition from the
fact that an orthogonal phase space transformation has rank 2m.

Thus our results show how theorems from statistical learning theory can be used to motivate
near-term CV quantum compiling algorithms. We illustrate the wide applicability of our cost
functions for CV quantum compiling by numerically demonstrating efficient learning of arbitrary
single-mode Gaussian unitaries, the generalized beamsplitter operation, and Kerr non-linearities.
We expect our algorithms to find applications in a broad range of areas including the characteriza-
tion of nonlinear optical media, entanglement spectroscopy, and optimal CV circuit design.
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Enhancing Combinatorial Optimization with Quantum Generative Models

Javier Alcazar1 and Alejandro Perdomo-Ortiz1, ∗

1Zapata Computing Canada Inc., 325 Front St W, Toronto, ON, M5V 2Y1

Abstract: Combinatorial optimization is one of the key candidates in the race for practical quantum advan-
tage. In this work, we introduce a new family of quantum-enhanced optimizers and demonstrate how quantum
machine learning models known as quantum generative models can find lower minima than those found by
means of state-of-the-art classical solvers. Preprint: arXiv:2101.06250

We present two new quantum-enhanced optimization strategies. The first scheme leverages data points evaluated during the
optimization search from any quantum or classical optimizer. In this scheme, we show how our quantum generative model boosts
the performance of classical solvers in hard-to-solve instances where the classical solver is not capable of making progress as
a stand-alone strategy. The second quantum optimization strategy works as a stand-alone solver. Here we show its superior
performance when the goal is to find the best minimum within the least number of cost function evaluations. Under this setting,
we benchmark our quantum-enhanced optimization strategies against several solvers, including Bayesian optimizers which are
known to be one of the best competing solvers in such tasks. To illustrate our findings, these benchmarks are performed in
the context of the portfolio optimization problem by constructing instances from the S&P 500 stock market index. We show
that our quantum-inspired generative models based on tensor networks generalize to unseen candidates with lower cost function
values than any of the candidates seen by the classical solvers. This is the first demonstration of the generalization capabilities
of quantum generative models that brings real value in the context of an industrial-scale application.

Along with machine learning and the simulation of materials, combinatorial optimization is one of top candidates for practical
quantum advantage. That is, the moment where a quantum-assisted algorithm outperforms the best classical algorithms in the
context of a real-world application with a commercial or scientific value. There is an ongoing portfolio of techniques to tackle
optimization problems with quantum subroutines, ranging from algorithms tailored for quantum annealers (e.g., Refs. [1, 2]),
gate-based quantum computers (e.g., Refs. [3, 4]) and quantum-inspired (QI) models based on tensor networks (e.g., Ref. [5]).

Regardless of the quantum optimization approach proposed to date, there is a need to translate the real-world problem into
a polynomial unconstrained binary optimization (PUBO) expression – a task which is not necessarily straightforward and that
usually results in an overhead in terms of the number of variables. Specific real-world use cases illustrating these PUBO
mappings are depicted in Refs. [6] and [7]. Therefore, to achieve practical quantum advantage in the near-term, it would
be ideal to find a quantum optimization strategy that can work on arbitrary objective functions, bypassing the translation and
overhead limitations raised here. In our work, we offer a solution to these challenges by proposing a family of quantum enhanced
optimizers (QEOs) which can scale to large problems where combinatorial problems become intractable in real-world settings.
Since our solver does not rely on the details of the objective function to be minimized it is categorized in the family of the so-
called black-box solvers. Another highlight of our approach is that it can utilize available observations obtained from attempts
to solve the optimization problem. These initial evaluations can come from any source, from random search trials to tailored
state-of-the-art classical (or quantum) optimizers for the specific problem at hand.

Our QEO strategy is based on two key ideas. First, our model relies on a probabilistic component which aims to capture the
correlations in previously observed data (step 0-3 in Fig. 1). In the proposal presented here, our QEOs leverage the probabilistic
modeling framework of generative models. Second, the (quantum) generative models need to be capable of generating new
“unseen” solution candidates which have the potential to have a lower value for the objective function than those already “seen”
and used as the training set (step 4-6 in Fig. 1). This is the fundamental concept of generalization: the most desirable and
important feature of any practical ML model. Finally, the new set is merged with the seed data set (step 7 in Fig. 1) to form an
updated seed data set (step 8 in Fig. 1) which is to be used in the next iteration of the algorithm.

Our work elaborate on these components and demonstrate these two properties in the context of the tensor-network-based
generative models and its application to a non-deterministic polynomial-time hard (NP-hard) version of the portfolio optimiza-
tion in finance, in particular, adding a cardinality constraint in the number of assets in the portfolio. The selection of optimal
investment on a specific set of assets, or portfolios, is a problem of great interest in the area of quantitative finance. The goal
of this optimization task, introduced by Markowitz [8], is to generate a set of portfolios that offers either the highest expected
return (profit) for a defined level of risk or the lowest risk for a given level of expected return. In this work, we focus in the
combinatorial optimization problem of choosing portfolios which minimizes its volatility or risk given a specific target return. A
brief summary results for both strategies are presented in figure 2. The relative quantum enhancement, η, in figure 2 (a) is com-

puted as η =
Ccl

min−CQEO
min

Ccl
min

× 100%., where Ccl
min is the lowest minimum value found by modes 1 or 2, while CQEO

min corresponds
to the lowest value found with the quantum-enhaced approach.

∗ alejandro@zapatacomputing.com
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FIG. 1. Scheme for our Quantum-Enhanced Optimizer (QEO). The QEO framework leverages generative models to utilize previous
samples coming from any classical or quantum solver to propose candidate solutions which might be out of reach for conventional solvers.
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FIG. 2. (a) TN-QEO as a booster. Results showing the relative quantum enhancement from TN-QEO over simulated annealing (SA) under
two different models corresponding to different annealing strategies. The comparison is such that both modes of SA and QEO have equal
computational time. Positive values of η indicate runs where TN-QEO outperformed the respective classical strategies. (b) TN-QEO as a
stand-alone solver. This is a comparison of TN-QEO against three classical competing algorithms.
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Diagnosing barren plateaus with tools from quantum optimal control

Martín Larocca,1, 2 Piotr Czarnik,2 Kunal Sharma,3, 2 Gopikrishnan
Muraleedharan,2 Patrick J. Coles,2 and M. Cerezo2, 4

1Departamento de Física “J. J. Giambiagi” and IFIBA, FCEyN,
Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
3Hearne Institute for Theoretical Physics and Department of Physics and Astronomy,

Louisiana State University, Baton Rouge, LA USA
4Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Variational Quantum Algorithms (VQAs) have received considerable attention due to their po-
tential for achieving near-term quantum advantage. However, the observation of barren plateaus, a
phenomenon by which the landscape becomes exponentially flat in the number of qubits, has raised
uncertainty around their scalability. In this work we employ tools from quantum optimal control
to develop a framework that can diagnose the presence, or absence, of barren plateaus for a certain
class of periodic ansatzes.

A. Introduction

Quantum computers hold the promise to achieve computational speed-ups over classical supercomputers for certain
tasks [1–4]. However, despite recent tremendous progress in quantum technologies, present-day quantum devices
(known as Noisy Intermediate-Scale Quantum (NISQ) devices) are constrained by the limited number of qubits,
connectivity, and by the presence of quantum noise [5]. One of the most promising computational models for making
use of near-term quantum computers are Variational Quantum Algorithms (VQAs) [6]. Despite the wide application
of VQAs, their widespread use is still limited by several challenges that can hinder their success. One of the main
threats to VQA scalability is the so-called barren plateau phenomenon, where the cost function becomes untrainable
due to gradients that vanish, on average, exponentially with the system size [7–18].

In this talk we will discuss the results in [19], i.e. how certain tools from quantum optimal control theory, in
particular, the notions of controllability and dynamical lie algebra, can be leveraged to diagnose the presence (or
absence) of barren plateaus in certain families of VQAs. Let us note that the framework developed here can be
readily leveraged by the field of quantum machine learning, e.g. to study the trainability of certain classes of quantum
neural networks, since these can be regarded as special cases of VQAs.

B. General framework

We consider an optimization task where the goal is to minimize a cost function of the form C(θ) = Tr[OU(θ)ρU†(θ)].
Here, ρ is an input state on n qubits in a d-dimensional Hilbert space with d = 2n, U(θ) a parametrized quantum
circuit (PQC), and O is a Hermitian operator that defines the task at hand. Moreover, we analyze layered parametrized
quantum circuits that, as shown in Fig. 1.(i), have a periodic structure of the form

U(θ) =
L∏

l=1

Ul(θl), Ul(θl) =
K∏

k=0

e−iHkθlk . (B1)

Here, the index l indicates the layer, θl = (θl1, . . . , θlK) contains the parameters of such layer (such that θ = {θl}Ll=1)
and Hj are Hermitian traceless operators that generate the unitaries in the ansatz. Let us define G = {Hk}Kk=0 as the
set of generators of the PQC. In what follows we refer to this type of ansatz as a Periodic Structure Ansatz (PSA). A
standard result in quantum optimal control (QOC) relates the unitaries that can be generated upon variation of the
parameters in the ansatz, to the so-called Dynamical Lie Algebra (DLA), defined as:

Definition 1 (Dynamical Lie Algebra). The Dynamical Lie Algebra (DLA) is the Lie Algebra generated by repeated
nested commutators of the operators in set of generators G, i.e.,

g = span 〈iH0, . . . , iHK〉Lie , (B2)

where 〈S〉Lie denotes the Lie closure, i.e., the set obtained by repeatedly taking the commutator of the elements in S.
In particular, the expressible unitaries U(θ) belong to the so-called Dynamical Lie Group G = eg.
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C. Results

The main result in [19] is that the dimension of the DLA plays a crucial role in determining if the cost function
will, or will not, exhibit a barren plateau. First, we consider the case when the cases when the ansatz is controllable,
that is, when its dynamical Lie algebra is full rank. Here, if the system has some a symmetry, so that the Hilbert
space is H =

⊕
j Hj with each Hj invariant under G, then we can show that

Varθ[∂µC(θ)] =
2dk

(d2k − 1)2
∆(H(k)

µ )∆(O(k))∆(ρ(k)) . (C1)

Here ∆(A) = DHS

(
A,Tr[A]11d

d

)
, with DHS (A,B) = Tr[(A − B)2] the Hilbert-Schmidt distance, and where we

defined A(k) as the reduction of operator A onto the subspace of Hk. Hence, if ρ belongs to an invariant subspace
where the system is controllable, then the scaling of the cost function partial derivative variance is determined by the
dimension of the invariant subspace rather than by the dimension d = 2n of the Hilbert space. That is, the variance
of the cost function partial derivatives will be exponentially vanishing in exponentially large subspaces and can be
polynomially vanishing in polynomially large subspaces.

Here we recall that when analyzing barren plateaus, one usually studies the scaling of the variance of the cost
function partial derivatives. This is due to the fact that an exponentially vanishing Varθ[∂µC(θ)] implies that the
cost derivatives exponentially concentrate around its average of zero. That is, the landscape becomes exponentially
flat.

Furthermore, we extend our results to the cases where the system is not controllable and Eq. (C1) does not hold.
Here, we have numerical evidence pointing towards a connection between the dimension of the algebra and the
vanishing of the variance, a notion that we formalize in the following observation

Observation 1. Let the state ρ belong to a subspace Hk associated with a DLA gk and allow the depth of the PSA
to be such that the distribution of unitaries generated by U(θ) has converged to the Haar measure in the Lie group G.
Then, the scaling of the variance of the cost function partial derivative is inversely proportional to the scaling of the
dimension of the DLA as

Varθ[∂µC(θ)] ∈ O
(

1

poly(dim(gk))

)
. (C2)

The implications of this observation are as follows. First, it shows that systems with a subspace DLA gk (i.e., the
DLA restricted to subspace Hk) that is polynomially growing with the system size can exhibit gradients that vanish
polynomially with the system size, and hence may not exhibit a barren plateau. Conversely, systems with a subspace
DLA that is exponentially growing with the system size can exhibit gradients that vanish exponentially with the
system size, and hence could exhibit a barren plateau as the circuit depth increases. Crucially, Observation 1, can be
used to diagnose the gradient scaling of the cost function by determining the size of the algebra generated by the set
of generators of U(θ).

To further support the claim in Observation 1, we performed numerical simulations of VQAs with ansatzes with
DLAs with different scalings (which we show in Fig. 1.(iii)). In particular we choose a Transverse Field Ising Model
(TFIM) ansatz, defined by GTFIM =

{∑nf

i=1 ZiZi+1,
∑n
i=1Xi

}
(see panel (a), nf = n−1 and nf = n correspond to open

and closed boundary conditions, respectively) and find that the variance of the cost function vanishes polynomially (see
panel (b)), as predicted by the Observation and the fact that the underlying DLA, gTFIM, is polynomial. Interestingly,
we find that a slight change in the set of generators GLTFIM = GTFIM

⋃ {∑n
i=1 Zi} (the addition of a single extra

generator) can lead to an exponential algebra and thus, as predicted by our Observation and confirmed by simulations
(see, again, panel (b)), exhibit exponentially vanishing gradients.

D. Outlook

The results presented in [19] constitute a basic framework for diagnosing the presence of barren plateaus in VQAs
using tools from QOC. The tools introduced here can be actively used to design ansatzes, as one could potentially
predict if an ansatz, or a modification to the ansatz, will lead to the cost function exhibiting a barren plateau. Hence,
our work can be considered as paving the way towards trainability-aware ansatz design.

While here we mainly focus on the trainability of ansatzes for near-term quantum computing, our results should
also be considered as useful in the broader context of QOC. Moreover, we expect our results to impact the quantum
machine learning community, as they could help in the desing of barren-plateau-free quantum neural networks.
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FIG. 1. iii) Numerical results for the TFIM and LTFIM models. a) Schematic illustration of a single layer of the
ansates. b) Variance of the cost function partial derivative of the cost function in (??) versus the number of qubits n for each
ansatz. The dashed (dotted) lines indicate the best polynomial (exponential) fit. The plot is shown in a log-linear scale. c)
Variance of the cost function partial derivative versus 1/ dim(g). The plot is shown in a log-log scale.
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Variational Quantum Algorithms (VQAs) are a promising approach for practical applications
on near-term quantum computers. Here we present a new optimization method, called the global
Coupled Adaptive Number of Shots (gCANS) method, which is efficient in both the number of
iterations shots required for a full VQA optimization.

I. INTRODUCTION

Quantum computing may unlock previously intractable computations for a variety of applications in the physical
sciences, industry, and beyond. However, the quantum computers that will be available in the near term are limited
by having few qubits as well as hardware noise that limits the number of operations that can be performed before the
information being manipulated degrades. Variational quantum algorithms (VQAs) [1, 2] are a promising approach to
near-term quantum computing as they typically require many fewer qubits as well as much shorter run times than
traditional quantum algorithms.

The reduced need for quantum resources allowed by VQAs comes at the cost of needing to classically optimize
the control sequence, or ansatz, used to prepare the quantum state. This means that the efficiency of the method is
largely determined by the computational expense of performing this optimization, which can often be non-trivial. The
theoretical run-time (and monetary cost on some platforms) primarily depends on the number of different circuits run
and the total number of shots. In order to realize time efficiency and affordability for VQAs, one therefore needs an
optimizer that uses few iterations and few shots without requiring costly hyperparameter tuning.

In this work, we introduce a new optimization method that adaptively allocates shots for the measurement of each
gradient component at each iteration. This optimizer, which we call the global-Coupled Adaptive Number of Shots
(gCANS) method, uses a criterion for allocating shots that incorporates information about the overall scale of the
shot cost for the iteration.

II. GCANS SHOT ALLOCATION RULE

We propose a new approach to SGD that, like iCANS [3], allows the number of shots per gradient component to
vary. However, rather than allowing them to vary independently, we now optimize our expected gain globally over
the entire gradient vector. That is, rather than taking an individual efficiency as in (??), our figure of merit is now:

Using G to denote the lower bound on the gain in stepping from θ(t) to θ(t+1)) (i.e. f(θ(t)) − f(θ(t+1))), we are
typically interested in its expectation:

E[G] =
(
α− Lα2

2

)∥∥∥∇f(θ(t))
∥∥∥
2

− Lα2

2

∑

i

σ2
i

si
. (1)

where σi is the standard deviation of Xi.

γ =
E[G]

∑d
k=1 sk

(2)

Using the first order optimality condition ∇sγ = 0 (further details provided in Appendix ??), we obtain the rule:

si =
2Lα

(2− Lα)
σi
∑d

k=1 σk

‖∇f(θ)‖2
(3)

This results from a global metric for efficiency, hence we term this shot count prescription global coupled adaptive
number of shots (gCANS). In addition to being shot frugal, we have also proven that this update step results in a
geometric convergence rate for convex optimization.
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Problem Optimizer Iterations (K) Shots (S) Cost (thousands of USD) Estimated Time (hours)

He+2

iCANS 3015 4.6× 107 127 12.86
gCANS 353 1.4× 107 18 1.98
SGD-DS 853 3.5× 107 44 4.86
ADAM 1450 8.7× 107 84 9.79

NH3

iCANS 8301 5.1× 108 5968 564.44
gCANS 1243 9.8× 107 901 85.72
SGD-DS 1395 1.8× 108 1036 100.10
ADAM 2740 5.5× 108 2104 207.51

TABLE I. We list the number of iterations and number of shots (averaged over 10 random starts) required to reach chemical
accuracy for the four optimizers we compare for the equilibrium configurations for He+2 and NH3. We also include the corre-
sponding hypothetical cost, in USD, if these optimizers were to be used for VQE on Amazon Braket. The costs are computed
with C = 0.3PK + 0.00035S dollars, where K is the number of iterations, P is the number of Pauli terms in the expansion of
Ĥ, and S is the total number of shots used [5]. We estimate the wall clock time by assuming shots are taken with a frequency
of 5 kHz (the sampling rate of [6]) and that it takes 0.1 seconds to change the circuit being run (following [7]). This gives a
time estimate T = 0.1PK + 0.0002S seconds. We neglect latency or time spent on classical update steps. Neither the cost
or the time estimates accounts for the burden of the hyperparameter tuning, which would likely be substantial for performing
SGD-DS.

III. NUMERICAL INVESTIGATION

We compare four optimizers: gCANS, iCANS[3], ADAM[4], and stochastic gradient descent with a shot budget
increases geometrically with each iteration (hereafter called SGD-DS). We find that gCANS is largely insensitive to
hyperparameter choice while performing as well or better than the other methods for VQE applied to He+2 as well as
NH3. See Table I for a comparison of the resource requirements to reach chemical accuracy for each of these methods.

IV. CONLCUSION

We contend gCANS should be considered the efficient optimization method of choice for variational algorithms and
quantum machine learning as:

i) gCANS consistently outperforms each of the optimizers we test, achieving chemical accuracy with fewer shots
and fewer circuit compilations. This translates to faster and cheaper (see Table I) experiments, bringing us closer
to a practical implementation of VQE on near-term quantum computers.

ii) Similar to iCANS, gCANS is extremely robust to changes in its hyperparameters (see Appendix ??), unlike
optimizers such as SGD-DS. This robustness reduces the resources required to identify the appropriate settings
of these hyperparameters.

iii) Unlike iCANS, which typically requires many iterations, gCANS has a proven geometric convergence rate.
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Abstract We introduce a teacher-student scheme that could systematically compare any QNN architectures
and evaluate their relative expressive power. In this work, we focus particularly on two recent proposals. We
also discuss alterations of these models to better understand the role of hidden units and the non-linearities in
these architectures.

The full article can be found here: https://arxiv.org/abs/2105.01477. Code to reproduce the results and ex-
plore further settings can be found in the following Github repository: https://github.com/KaterinaGratsea/
Teacher-student_scheme.

1. INTRODUCTION

Machine learning (ML) combined with quantum information processing gave rise to quantum machine learning (QML),
which entails ML tasks performed (at least partially) on quantum computers. Recent results suggest possible advantages for
generative QML applications compared to their classical analogs [1], but these models are unlikely to run on current quantum
devices since they would require a fault tolerant universal quantum computer. In theory, to build a specific QML architectures
on a quantum device, e.g. a quantum neural network (QNN), one could always make the classical logic of a neural network
(NN) reversible and implement it via unitaries on a quantum computer [2]. This approach would require many qubits and error
correction which is unrealistic for current quantum devices either. Furthermore, it is not clear if such an approach would yield
any quantum advantage. In recent years, with the advent of Noisy Intermediate-Scale Quantum (NISQ) devices [3] near-term
QML applications, such as variational quantum circuits (VQCs) have attracted increasing attention. VQCs are strong candidates
for many general classical and quantum optimization applications [4–6], but also for the contruction of quantum perceptrons
or neurons [2, 7, 8]. Following the classical analog of NN, QNNs can be built by casting together several of these quantum
perceptrons [9, 10] to build deep structures with hidden layers. In general though, the role of these hidden units and non-
linearities in QNNs that are built from VQCs is not as straightforward as for their classical counter part.

The aim of this works is to compare the relative expressive power of two conceptually different QML architectures. The first
one is the quantum perceptron (QP) as described in [7], which can be cast together with other quantum perceptrons to build
deep QNN structures [9]. The non-linear activations are introduced with dissipative units where ancillary qubits form the output
layer, while the qubits from the input layers are discarded [11]. The second one is re-uploading architecture (RU) [12] which
introduces the non-linear behaviour by repeatedly re-uploading the input data after each trainable unitary. We compare these two
architectures to better understand the dissipative nature of the deferred measurement and the re-uploading of the data. To have a
fair comparison, we use the same data encoding architecture in both models and to avoid the effect of data selection we deploy
a so-called teacher-student scheme, where each architecture will play once the role of the teacher and once the student. Even
more, we use different realizations of the teachers and obtain the average performances for the students. This scheme offers a
systematic comparison which aims to understand the role of the hidden units and non-linearities in quantum models.

2. TEACHER-STUDENT SCHEME

Here, we introduce the teacher-student scheme that aims to to benchmark different realizations of QP and QNN against each
other. We systematically compare the two aforementioned architectures (QP and RU), but the scheme could be used for any
circuits. The main idea is that one architecture (for example the QP) will play the role of the teacher and generate the labels that
will be used to train the student (for example the re-uploading quantum model). Thus, we avoid to generate artificial data sets,
such as e.g the circle data set in [12], that could possibly favour one of the architectures. With the teacher-student scheme, we
directly see the data structures that each architecture can generate and how well other architectures could learn them.

∗ gratsea.katerina@gmail.com
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a. Notion of teacher The teacher generates the labels for a fixed set of inputs D = {xk} with 2 dimensional input vectors
x = {x1, x2} on a grid xi ∈ [−π, π]. For a fixed teacher architecture we choose several random initializations for the parameters
w of the processing gates. We use the measurement outcomes of the ancilla qubit as the model predictions yk of the input
data. This way we can generate several data sets for different random initializations. The predictions have continuous values
yk ∈ [−1, 1] given by the outcome of the measurement ⟨ψk|Z |ψk⟩, but we also generate binary valued labels by choosing
ykbinary = sign(yk). The teachers with binary labels focus more on the basic characteristics of the data structures, while the ones
with continuous labels also care for the details. We can visualize the data structures with prediction maps , which are the density
plots of the model predictions and labels yk for the input data xk.

b. Notion of student We train the students with the labeled data generated by their teachers to learn those data structures.
It is not obvious how to define a good/bad student, since different tools can be used to characterize their performance. The
prediction maps of the students are best for visualizing the similarity of the student’s and teacher’s predictions of the label yk to
gain qualitative results. For a more rigorous quantitative comparison we compute the relative entropy between the student’s and
teacher’s outputs yk. Specifically, we use the information divergence (Kullback–Leibler divergence or relative entropy) which
defines a distinguishable measure between two probability distributions P and Q [13]:

S(P∥Q) =
N∑

i=1

pi ln
pi
qi
. (1)

When the two distributions are similar, the value of the relative entropy is close to zero. To interpret the predicted labels yk

as probabilities, we offset and re-normalize them (yk > 0,
∑

xk∈D y
k = 1). Then, to compare two prediction maps, the

information divergence is calculated by summing over the whole input space. Here, we are interested in the average relative
entropy of all teacher-student pairs. Another qualitative metric is the loss function which determines the success of the training.
When the student is trained with the binary valued labels the percentage of the correctly predicted labels can be computed. We
refer to this as the accuracy score which gives an overall performance of the student. To identify a good/bad student all these
tools should be taken into account.

3. CONCLUSIONS

Inspired by the recent works [7, 12], we explored the expressive power of QPs, their formation to QNNs and the RU models
implemented on NISQ devices. In order to systematically compare the architectures, we introduced a so-called teacher-student
scheme, where the studied models are introduced once as a teacher and once as a student. This way we can avoid to generate
synthetic data sets that might give an advantage to certain architectures and it creates a more fair framework for comparing any
quantum models.

Specifically, we showed that the deep structures that can be built with QPs only increase the expressivity of a model if the
data are uploaded several times. It is not sufficient to use deferred measurements to generate hidden non-linearities similar to
classical NNs if the output of a QP is reused. We explored several different ways of how to leverage deferred measurements to
generate hidden non-linearities, but the expressive power of QNNs only improved when additional data-uploadings were added.
This suggests that the non-linear behaviour induced by a measurement of a single QP cannot be generalized to deep QNNs if the
single QPs are cast together in a coherent way. Therefore, it is still an open question how to build deep QNNs in a coherent way,
where measurements only occur at the end of the computation. Thus, one should not expect a one-to-one mapping of quantum
and classical NNs.

These results are in accordance with the recent work [14], which shows that the number of times that the data are encoded
determines the functions that can be approximated. The needed non-linearities in a quantum model can be generated (apart from
the measurement) from the encoding gates that are non-linear functions of the input data. Performing PCA on the probability
vectors, we showed that given the encoding, the data can already be separated without further processing. Therefore, the
performance of a QP is strongly affected by the encoding and the dataset itself. Apart from the encoding, the processing plays
an important role as well. The universal approximation capability of different quantum models has been discussed extensively in
[12, 15–17], but it does not provide any information about how well the circuit could perform or how many parameters it needs
to approximate a function within a certain error. The calculation of the average relative entropy showed that the trainable part of
the circuit affects the functions that can be approximated. This effect will be further explored in subsequent research.

For future work, it will be of great interest to explore different perceptron models and compare their performance with the
teacher-student scheme. Then, the question arises which perceptron model will be the ideal building block of QNN architectures
and how quantum perceptrons could be combined to form a deep QNN. Another research direction is to explore other quantum
models with no direct analog with classical NN, like the re-uploading model or quantum kernels in general. Finally, it would be
of great importance to further explore the role of entanglement and encoding in QPs, in their formation to QNNs and in other
quantum models.
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Towards understanding the power of quantum kernels in the NISQ era

Xinbiao Wang Yuxuan Du ∗ Yong Luo Dacheng Tao

Abstract

In this work, we theoretically and empirically study the power of quantum kernels in the NISQ era. We first
prove that the advantage of quantum kernels vanishes for large size of datasets, few number of measurements,
and large system noise. With the aim of preserving the superiority of quantum kernels in the NISQ era, we
further devise an effective method via indefinite kernel learning. Numerical simulations accord with our
theoretical results. Arxiv

1 Introduction
A key problem in the field of quantum computing is understanding whether quantum machine learning (QML)
models implemented on noisy intermediate-scale quantum (NISQ) machines can achieve quantum advantages.
Recently, Huang et al. [1] partially answered this question by the lens of quantum kernel learning. Namely,
they exhibited that quantum kernels can learn specific datasets with lower generalization error over the optimal
classical kernel methods. Despite the promising achievements, most of the theoretical results in [1] are established
on the ideal setting. In particular, they assumed that the number of measurements is infinite and the exploited
quantum system is noiseless, where both of them are impractical for NISQ devices. The quantum kernel returned
by NISQ machines, affected by the system noise and a finite number of measurements, may be indefinite and
therefore does not obey the results claimed in [1]. Driven by attractive merits comprised by quantum kernel
methods and the deficiencies of near-term quantum machines, a crucial question is: Does the power of quantum
kernels still hold in the NISQ era? A positive affirmation of this question will not only contribute to a wide
range of machine learning tasks to gain prediction advantages but can also establish the quantum deep learning
theory.

Problem setup. let us first recap the necessary notations and the explicit form of the achieved generalization
error bound. Denote D = {x(i), y(i)}ni=1 as the training data, W ∈ Rn×n as the ideal quantum kernel whose
element equals to Wij = Tr(ρ(x(i))ρ(x(j))), ∀i, j ∈ [n], where ρ(x(i)) refers to the density operator of the
encoded quantum data with respect to x(i). In the NISQ scenario, the depolarization channel

Np(ρ) = (1− p)ρ+ pI2N
2N

(1)

with depolarizing rate p and the finite number of measurements m are considered. Thereby, the estimated
quantum kernel is denoted by Ŵ whose element yields

Ŵij =
1

m

m∑

k=1

Vk, ∀i, j ∈ [n], (2)

where Vk ∼ Ber(W̃ij) is the output of a quantum measurement and X ∼ Ber(p) refers to the Bernoulli
distribution with Pr(X = 0) = p and Pr(X = 1) = 1 − p, and W̃ij = Tr(Np(ρ(x(i))ρ(x(j)))). The aim of
quantum kernels learning in NISQ era is using the quantum kernel Ŵ instead of W to infer a hypothesis.

2 results

Theorem1. Let the size of training dataset ben and the number of measurements ism. DefineY = [y1, · · · , yn]>
as the label vector and cW = ‖W−1 ‖2. Suppose the system noise is modeled byNp in Eqn. (1). With probability
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at least 1− δ, the noisy quantum kernel Ŵ in Eqn. (2) can be used to infer a hypothesis h(x) with generalization
error

E
x,Ŵ
|h(x)− y| ≤ Õ

(√
c1
n

+

√
1

c2

n√
m

)
(3)

where c1 = Y >W−1Y and c2 = max(c−2W ((12 log(
4n2

δ ))
1
2 +m

1
2 p
(
1 + 1

2N+1 )
)−1 − n√

m
c−1W , 0).

Notably, when the depolarization noise is considered, the generalization error of the noisy quantum kernel
E
x,Ŵ
|h(x)− y| will always have a term n1/4.

Theorem [1] provides a central theoretical contribution for this paper that a larger data size n, a higher system
noise p, and a fewer number of measurementsm will make the generalization advantage of quantum kernels
inconclusive. This result indicates a negative conclusion of using quantum kernels implemented on NISQ devices
to tackle large-scale learning tasks with evident advantages, which is contradicted with the claim of the study [1]
such that a larger data size n promises a better generalization error.

Our second contribution is empirically demonstrating that under the NISQ setting , the advantage of quantum
kernels may be preserved by suppressing the estimation error of the kernel matrix. Concretely, we adopt the
advanced spectral transformation techniques, which are developed in indefinite kernel learning[2, 3, 4, 5], to
alleviate the negative effect induced by the system noise and the finite measurements. The corresponding
theoretical result is summarized in Lemma 1. Numerical simulation results demonstrate that the performance
of noisy quantum kernels can be improved by 14% (see figure 1). Our work opens up a promising avenue to
combine classical indefinite kernel learning methods with quantum kernels to attain quantum advantages in the
NISQ era.

Lemma 1. LetW and Ŵ be the ideal and noisy quantum kernel respectively. Applying the spectral transformation
techniques to Ŵ, the obtained kernel Ŵ� ∈

{
Ŵc, Ŵf , Ŵs

}
yields

∥∥∥W−Ŵ�
∥∥∥
F
≤
∥∥∥W−Ŵ

∥∥∥
F
, (4)

where ‖·‖F refers to the Frobenius norm, and Ŵc, Ŵf , Ŵs refer to matrices calibrated by three different spectral
transformation methods, i.e., clipping[3], flipping[6], and shifting[7] methods.

ShiftFlip

# of measurements

ClipOriginal

Figure 1: The comparison of noisy quantum kernels with different calibration methods. The left subplot depicts
the simulation results of noisy quantum kernels calibrated by the nearest projection as labeled by ‘Original’. The rest three
subplots from left to right illustrates the simulation results calibrated by the spectral transformation methods, i.e., clipping,
flipping, and shifting methods.

3 Summary
In this study, we investigate the generalization performance of quantum kernels under the NISQ setting. We
theoretically exhibit that a large size of the training dataset, a small number of measurement shots, and a large
amount of quantum system noise can destroy the superiority of quantum kernels. To improve performance of
quantum kernels in the NISQ era, we further prove that effective spectral transformation techniques have the
potential to maintain the advantage of quantum kernels in the NISQ era. Besides the theoretical results, we
empirically demonstrate that spectral transformation techniques have the capability of improving performance of
noisy quantum kernels for both the depolarization noise and noise extracted from the real quantum-hardware
(IBMQ-Melbourne). The achieved results in this study fuel the exploration of quantum kernels assisted by other
advanced calibration methods to accomplish practical tasks with advantages in the NISQ era.
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1Pasqal, 2 avenue Augustin Fresnel, 91120 Palaiseau
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We introduce a graph kernel based on the time-evolution of a quantum system, whose
Hamiltonian encodes the topology of the input graph. We study analytically the proce-
dure and show numerically that it performs well compared to standard kernels. Finally, we
characterize the implementation on a neutral-atom quantum processor.

INTRODUCTION

In many fields such as chemistry [1, 2], bioinformatics [3, 4], social network analysis[5], computer
vision[6], or natural language processing [7, 8], some observations have an inherent graph structure,
requiring the development of specific algorithms to exploit the information contained in their
structures. A large body of work exists in the classical machine learning literature, trying to study
graphs through the use of graph kernels that are measures of similarity between graphs[9–12].
The idea behind the graph kernel approach is very generic, and consists first in finding a way to
associate any graph with a feature vector encapsulating its relevant characteristics (the feature
map) and then to compute the similarity between those vectors, in the form of a scalar product in
the feature space.

Previous work on quantum graph kernels has been done[13–15], both as generic algorithms
introducing novel approaches inspired by quantum mechanics (Quantum graph neural networks[16],
Quantum-walk kernels[17, 18]), as well as with a more specific computing platform in mind (e.g.
using photonic devices[19]).

Here we propose a more versatile and easily scalable graph kernel based on similar ideas. The
core principle is to encode the information about a graph in the parameters of a tunable Hamiltonian
acting on an array of qubits and to measure a carefully chosen observable after an alternating
sequence of free evolution (i.e. with this Hamiltonian) and/or parametrized pulses, similarly to what
is done in the Quantum Approximate Optimization Algorithm (QAOA)[20], or after a continuously
parametrization of the Hamiltonian, similarly to what can be done in optimal control[21]. This
kernel can be realized with state-of-the-art Quantum Processing Units(QPUs), in particular with
Rydberg atom processors [22–24], in which highly tunable Hamiltonians can be realized to encode
a wide range of graph topologies with up to hundreds of qubits.

I. QUANTUM EVOLUTION KERNEL

The time-evolution of a quantum state on a graph is a rich source of features for machine
learning tasks such as the aforementioned classification and regression. We present here a new
Quantum Evolution Kernel (QEK), using the dynamics of an interacting quantum system as a
tool to characterize graphs. The approach we propose consists in associating each graph with a
probability distribution, obtained through the measurement of an observable on a quantum system
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whose dynamics is driven by the topology of the graph. The QEK between two graphs and is then
given as a distance between their respective probability distributions.

More specifically, we consider a system whose time-evolution is governed by the Hamiltonian
ĤG , that can be any parametrized Hamiltonian whose topology of interactions is that of the graph
under study. We introduce then another Hamiltonian Ĥθ, parametrized by a set of parameters θ,
independent of the graph G and use it to apply pulses to the system (i.e. letting it evolve with a
coherent single-qubit driving Ĥθ).

The system starts in a predefined state |ψ0〉. After an initial pulse with Ĥθ0 , we alternatively
let the system evolve with ĤG (for a duration τi) and Ĥθi . This time evolution can be summed up
in the set of parameters Λ = {θ0, t1, θ1, . . . , tp, θp} After the time-evolution the system ends up in
the state

|ψf 〉 =

p∏

i=1

(
e−iĤθi e−iĤGti

)
e−iĤθ0 |ψ0〉 (1)

Once the system has been prepared in the final state |ψf 〉, an observable Ô is measured, to be
used in the construction of the probability distribution. We present here several possible choices
for this distribution.

For two graphs G and G′, and their respective probability distributions P and P ′, we define the
graph kernel as Kµ(G,G′) = exp [−µJS(P,P ′)] where we have chosen the distance between the
two distributions as their Jensen-Shannon divergence JS(P,P ′).

II. EXPERIMENTS AND RESULTS

We tested the protocol on a graph classification task in association with a Support Vector
Machine (SVM) on several datasets. We compared the accuracy score with other graph kernels
on the same task, the Random Walk (RW) [25] kernel and the Graphlet Subsampling (GS)[26, 27]
kernel. The parameter Λ is trained by Bayesian Optimization on the final score function. The
datasets are taken from the repository of the Technical University of Dortmund [28]. For all
datasets, at least one quantum kernel is better than the best classical kernel.

Furthermore, we show that this method is readily amenable to an already existing platform,
based on Rydberg atoms, through direct emulation of its dynamics. In this implementation, the
topology of the graph is encoded in the interactions between individual atoms, determined by their
spatial arrangement. Our results show that, even in presence of noise, reasonable accuracies can
be achieved, as compared to already existing kernels.

FULL WORK AND CODE AVAILABILITY

The full manuscript can be accessed at https://arxiv.org/abs/2107.03247. It has been
accepted for publication in Physical Review A. A tutorial following the structure of the paper is
available at https://pulser.readthedocs.io/en/stable/tutorials/qek.html. The extensive
code is available at https://github.com/pasqal-io/qgraph.
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[6] Zäıd Harchaoui and Francis Bach. Image classification with segmentation graph kernels. In 2007 IEEE

Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007.
[7] Giannis Nikolentzos, Polykarpos Meladianos, François Rousseau, Yannis Stavrakas, and Michalis Vazir-

giannis. Shortest-path graph kernels for document similarity. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pages 1890–1900, 2017.
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Introduction

We study the problem of testing identity of a collection of unknown quantum states given sample
access to the collection. We show that for a collection of d-dimensional quantum states of cardinality
N , the sample complexity is O(

√
Nd/ε2), which is optimal up to a constant. We assume a sampling

model access, where each state appears with some known probability, adapting [LRR13, DK16] to
the quantum case. The test is obtained by estimating the mean squared Hilbert-Schmidt distance
between the states, thanks to a suitable generalization of the estimator of the Hilbert-Schmidt
distance between two unknown states of [BOW19].

This problem is an example of property testing, a concept developed in computer science [Gol17],
and applied to hypothesis testing of distributions [Can20] and quantum states and channels [MdW16].
At variance with optimal asymptotic error rates studied in statistical classical and quantum hypoth-
esis testing [LR06, Hay16], the sample complexity captures finite size effect in inference problems,
as it expresses the number of samples required to successfully execute an inference task in terms
of the extensive parameters of the problem, in our case the dimension d and the cardinality N of
the collection. The interest in these kind of questions in the classical case has been motivated by
the importance of the study of big data sources; a similar motivation holds for the quantum case,
since outputs of fully functional quantum computers will also live in high-dimensional spaces.

Related work

The problem of learning properties of classical distributions in the property testing approach is a
vast research area [Gol17,Can20]. Since learning a classical distribution on a set of cardinality d, in
total variational distance, can be done in O(d/ε2) samples [Gol17], the interest in testing properties
is to get a sample complexity o(d). Identity testing for two unknown distribution has a sample
complexity Θ(max(d1/2/ε2, d2/3/ε4/3)) [CDVV14]. The problem of testing identity of collection of
N distributions was introduced in the classical case in [LRR13] and solved in [DK16], obtaining
Θ(max(

√
dN/ε2, d2/3N1/3/ε4/3)) for the sampling model, where at each sample the tester re-

ceives one of N distributions with probability pi, and Θ(max(
√
d/ε2, d2/3/ε4/3)) for the query

model, where the tester can choose the distribution to call at each sample. In the quantum case,
quantum tomography, requires Θ(d2/ε2) copies of the state [HHJ+17, OW16, OW17]. These al-
gorithms require spectrum learning as a subroutine [ARS88, KW01, HM02, CM06, Key06], which
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has the sample complexity O(d2/ε2) [OW15]. The measurement used for spectrum learning is
known as weak Schur sampling, and it can be efficiently implemented, with gate complexity
O(n, log d, log 1/δ) [BCH06, Har05, Kro19], where n is the number of copies of the state, and δ is
the precision of the implementation. Weak Schur sampling is a key ingredient in measurement with
optimal sample complexity for testing identity to the completely mixed state O(d/ε2) [OW15] and
identity testing between unknown states [BOW19]. In [BOW19], identity testing between unknown
states is done by first estimating their Hilbert-Schmidt distance with a minimum variance unbiased
estimator, developing a general framework for efficient estimators of traces of polynomials of states.
This improves on a primitive way to estimate the overlap Tr[ρσ] between two unknown states, the
swap test [BCWdW01], while optimal estimation of the overlap between pure states with average er-
ror figures of merit has been addressed by a series of works [BRS04,BIMT06,LSB06,GI06,FRS+20].
The present work develops the method of [BOW19], building a test based on a nested weak Schur
sampling measurement. The sample complexity of testing identity of collections of quantum states
in the query model was established to be Θ(d/ε2) in [Yu19], with an algorithm which makes direct
use of the Hilbert-Schmidt estimator of [BOW19] on chosen couples ρi, ρj . This measurement is
different from the collective nested weak Schur sampling measurement we employ in our test.

Results

Given a collection of d-dimensional quantum states {ρi}i=1,...,N , and a probability distribution pi,
we consider a sampling model [LRR13,DKN15] where we have access to copies of the state

ρ =

N∑

i=1

pi |i〉〈i| ⊗ ρi. (1)

where {|i〉}i=1,...,N is an orthonormal basis of CN . We are promised that one of the two following
properties holds:

• Case A: ρ1 = ρ2 = ... = ρN ;
∑

i piDTr(ρi, σ) = 0, with DTr the trace distance;

• Case B: For any d-dimensional state σ it holds
∑

i piDTr(ρi, σ) > ε.

Where DTr is the trace distance. The goal is to find M such that there is a two-outcome test
using M copies of ρ, which can return either "accept" or "reject", and which accepts (that is,
it returns the outcome "accept") with probability larger than 2/3 in case A, and it accepts with
probability smaller than 1/3 in case B. We prove the following results:

Theorem 1.1. Given access to O(
√
Nd
ε2

) samples of the density matrix ρ of Eq. (1), there is an
algorithm which can distinguish with high probability whether

∑
i piDTr(ρi, σ) > ε for every state

σ, or there exists a state σ such that
∑

i piDTr(ρi, σ) = 0 (that is, all the states ρi are equal).

Moreover, the observable used in the test of the theorem can be implemented efficiently by
nested weak Schur sampling.

Theorem 1.2. Any algorithm which can distinguish with high probability whether
∑

i piDTr(ρi, σ) >
ε for every state σ, or there exists a state σ such that

∑
i piDTr(ρi, σ) = 0 (that is, all the states ρi

are equal), given access to M copies of the density matrix ρ of Eq. (1), requires at least M = Ω(
√
Nd
ε2

)
copies.
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Abstract

We prove a polynomial speedup compared to [1] for training of noisy quantum support
vector machines via the dual optimization problem. We introduce the Pegasos algo-
rithm [2] as an alternative and derive bounds on its runtime, which scales favorably. In
addition, we analyze quantum neural networks numerically from the same perspective.

At the heart of quantum support vector machines (QSVMs) [3, 1] and quantum neural networks
(QNNs) [3, 4] are quantum expectation values. By Born’s rule, even on an ideal fault-tolerant
quantum computer, these can fundamentally only be determined approximately for any finite
number of measurement shots, which invariably introduces statistical uncertainty into the
algorithms. In this work, the computational complexity for the models of both training and
prediction is analyzed taking this into account.

The machine learning task under consideration is binary supervised classification. There,
the learner is given a training set T = {(x1, y1), (x2, y2), ..., (xM , yM )} with elements in Rs ×
{+1,−1} (data and labels) and a test set S = {x′1,x′2...,x′m} with elements in Rs, where the
labels are unknown during the training procedure. The goal is to accurately predict the labels
of the elements in the test set.

...
...

...

|0〉⊗q E(x) E(x′)†

|ψ(x)〉

Figure 1: Quantum kernel circuit.

...
...

...

|0〉⊗q E(x) W(θ)

|ψ(x)〉 |ϕ(x, θ)〉

Figure 2: Quantum neural network.

Quantum support vector machines

A standard approach to do binary supervised classification is via a support vector machine
(SVM). The sole difference between a QSVM and an SVM is that the so-called kernel function
is evaluated on a quantum computer in the former case. More precisely, consider a kernel

k(x,x′) = tr
[
|ψ(x′)〉〈ψ(x′)| |ψ(x)〉〈ψ(x)|

]
= | 〈ψ(x′)|ψ(x)〉 |2 = | 〈0| E(x′)†E(x) |0〉 |2,

that can be computed via the circuit given in Figure 1. Note that whenever the mapping
E is such that it can be implemented efficiently on a quantum computer but not on any
classical device (such as IQP [5] or Forrelation [6] type circuits), we can evaluate k(x,x′)
with a quantum speedup. Because of the stochastic nature of quantum mechanics, and since
we can only run a finite number of measurement shots, the kernel can only be evaluated
approximately. This is a fundamental difference to classical kernels.
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Dual optimization problem The so-called dual optimization problem in QSVMs denotes
the following convex optimization problem

maximize
αi ∈ R

∑

i

αi −
1

2

∑

i,j

αiαjyiyj k(xi,xj)−
1

2

∑

i

α2
i

C

subject to 0 ≤ αi ∀i.
(1)

whose solution defines the fully trained classifier. In Table 1, we state the overall computa-
tional cost for solving (1) such that the resulting classification function is ε close with high
probability to the ideal one stemming from exact kernel evaluations. We note that our bound
improves on the best previously known results for the same setting scaling as O

(
M6/ε2

)
[1].

Pegasos Algorithm Alternatively to (1), the primal optimization problem

minimize
w ∈ Rs, b, ξi ∈ R

1

2
‖w‖2 + C

∑

i

ξi

subject to yi(w
>xi + b) ≥ 1− ξi, ξi ≥ 0 ∀i .

(2)

can be approximately solved with the kernelized Pegasos algorithm [2], which is a form of
stochastic sub-gradient descent. This work marks the first usage of the Pegasos algorithm
for QSVMs and we display its overall runtime in Table 1. Unlike in an entirely classical setting
(where Pegasos was introduced), we adapt the algorithm to noisy kernels.

Quantum neural networks

An alternative to QSVMs are QNNs that are defined like the variational quantum classifiers
in [3] as the succession of a feature map circuit E(x) and a variational circuit W(θ). In that
case, the circuit parameters that are fixed by the input data x and trainable ones denoted
by θ are strictly separated. See Figure 2 for a generic circuit. In Table 1, we highlight the
computational cost for training and prediction via QNNs.

Results

Table 1 summarizes the computational complexity for training and prediction using QSVMs
or QNNs. We observe that QNNs and for QSVMs Pegasos are particularly competitive.

QSVM (dual) QSVM (Pegasos) QNN

training O
(
M4.67/ε2

)
O
(
min

[
M2/δ3, 1/δ5

])
O (d/εn)

prediction O
(
S2/ε2

)
O
(
S2/ε2

)
O
(
1/ε2

)

Table 1: Asymptotic complexity of the number of ideal quantum circuit evaluations necessary
for training and prediction. M is the size of the training set, S the number of support vectors,
d the number of trainable parameters, n = 3 conjectured, ε a bound on the difference between
the ideal and noisy classification function that holds with probability > 1

2 and δ the accuracy
with which (2) is approximated.
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We propose a quantum algorithm for linear regression based on quantum amplitude estimation. This outputs
regression coefficients as classical data with complexity depending on the number of data logarithmically and
on the tolerance ϵ as O(ϵ−1), in contrast to O(ϵ−2) in existing methods. Additionally, we generalize it for convex
optimization.

(The full version of this extended abstract is available at [1].)

Linear regression is a basic tool for natural and social sciences. This can be described as follows: given ND data points
{(x⃗i, yi)}i=1,..,ND , each of which consists of a vector of d explanatory variables x⃗i = (x(1)

i , ..., x
(d)
i )T ∈ Rd and an objective variable

yi ∈ R, find an approximation of yi as a linear function of x⃗i, that is, yi ≈ a⃗ · x⃗i with some regression coefficients a⃗ ∈ Rd. More
strictly, we find a⃗ which minimize

∥∥∥y⃗ − Xa⃗
∥∥∥2

, where ‖ · ‖ is the Euclidean norm, X := (x⃗1, ..., x⃗ND )T is a ND × d matrix called the
design matrix, and y⃗ := (y1, ..., yND )T . Such a⃗ is given by a⃗ = W−1z⃗, where W := 1

ND
XT X and z⃗ := 1

ND
XT y⃗. Therefore, we obtain

a⃗ by classically calculating elements of W and z⃗ as

wi j =
1

ND

ND∑

k=1

x(i)
k x( j)

k , zi =
1

ND

ND∑

k=1

x(i)
k yk, (1)

respectively, and then W−1z⃗. We hereafter call this method the naive classical method. In the ordinary situation where d � ND,
the bottleneck part of this is calculating (1), which obviously takes O(d2ND) computational time.

On the other hand, there are some quantum algorithms for this with complexity depending on ND as O(polylog(ND)) [2–7]1,
which means the exponential speedup compared with the naive classical method. However, we should note that many of existing
quantum methods create quantum states in which the values of the regression coefficients are encoded in the amplitudes of basis
states. Therefore, if we obtain the coefficients as classical data from such a state, the estimated coefficients are accompanied by
errors inevitably, and high-accuracy estimation leads to large complexity. The existing method for calculating the coefficients as
classical data with the best complexity with respect to the error tolerance ϵ is [4], and its complexity is

O
(

d5/2κ3

ϵ2
polylog

(
dκ
ϵ

))
, (2)

where κ is the condition number of X. If ND is intermediate, say 103 − 105, and ϵ ≲ 10−3, a naive classical method can have a
smaller complexity than (2).

In [1], we present a new quantum algorithm for linear regression, focusing on reducing the order of ϵ−1 in the expression of
the complexity. In our method, unlike existing methods, we do not perform all calculation on a quantum computer. Instead, we
use a quantum computer only to perform a bottleneck part in the naive classical method. That is, we estimate the sums (1) by
quantum amplitude estimation (QAE) [11–17], which is known for providing quantum speedups for some kinds of computation
such as Monte Carlo integration [12, 18]. Then, we classically solve the d-dimensional system of linear equations Wa⃗ = z⃗, and
obtain a⃗ as classical data.

For more strict discussion, let us make some assumptions.

Assumption 1. We can use the oracles Px and Py such that, for any i ∈ {1, ..., d} and k ∈ {1, ...,ND}, Px : |i〉 |k〉 |0〉 7→ |i〉 |k〉 |x(i)
k 〉

and Py : |k〉 |0〉 7→ |k〉 |yk〉.
Assumption 2. The design matrix X is full-rank.

Assumption 3. 0 ≤ x(i)
k ≤ 1, 0 ≤ yk ≤ 1 for any i ∈ {1, ..., d} and k ∈ {1, ...,ND}.

Assumption 4. There exists a positive real number c, which is independent of ND, ϵ, κ and d, such that wii =
1

ND

∑ND
k=1

(
x(i)

k

)2
> c

for any i ∈ {1, ..., d}.

∗ koichi.miyamoto@qiqb.osaka-u.ac.jp
1 There are also quantum-inspired classical methods [8–10].
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Assumption 3 and 4 are seemingly strong but actually natural, since, for successful regression, we should know “typical scales”
of explanatory and objective variables for preprocessings such as outlier handling, and then we can use them to rescale the
variables. Then, denoting the max norm as ‖ · ‖∞, we have the following theorem.

Theorem 1. Let ϵ be a given positive number. Under Assumption 2 to 4, there is a quantum algorithm that makes

O
(
max

{
d3/2κ4

ϵ
, dκ2

}
× d2 log(d)

)
(3)

uses of Px and

O
(
max

{
d3/2κ4

ϵ
, dκ2

}
× d log(d)

)
(4)

uses of Py, and outputs a⃗ ∈ Rd such that ‖a⃗ −W−1z⃗‖∞ = O(ϵ) with a probability larger than 99%.

Besides, inspired by the above linear regression algorithm, we propose a quantum algorithm for some class of convex opti-
mization. Suppose that we want to find the minimum point a⃗⋆ ∈ Rd of the following objective function

F(a⃗) =
1

ND

ND∑

k=1

f (a⃗, c⃗k). (5)

Here, f is a real-valued twice-differentiable function, which are shared by all the terms. Its inputs are the optimization variables
a⃗ ∈ Rd and some parameters c⃗k, which are different in each term. We can see that linear regression falls into this type of problem.
For such an objective function, the gradient g⃗F(a⃗) = (gF,1(a⃗), ..., gF,d(a⃗))T and the Hessian HF(a⃗) = (hF,i j(a⃗))1≤i≤d

1≤ j≤d
are given as

gF,i(a⃗) =
∂F
∂ai

(a⃗) =
1

ND

ND∑

k=1

∂ f
∂ai

(a⃗, c⃗k), hF,i j(a⃗) =
∂2F
∂ai∂ai

(a⃗) =
1

ND

ND∑

k=1

∂2 f
∂ai∂a j

(a⃗, c⃗k). (6)

Since these are the sums of many terms, each of which is same function with different inputs, we can estimate (6) by QAE with
a complexity depending on ND logarithmically and on the error tolerance ϵ as O(ϵ−1), if the following oracles are available

Pc : |k〉 |0〉 7→ |k〉 |⃗ck〉 , Pi : |⃗a〉 |⃗ck〉 |0〉 7→ |⃗a〉 |⃗ck〉
∣∣∣∣∣
∂ f
∂ai

(a⃗, c⃗k)
〉
, Pi j : |⃗a〉 |⃗ck〉 |0〉 7→ |⃗a〉 |⃗ck〉

∣∣∣∣∣∣
∂2 f
∂ai∂a j

(a⃗, c⃗k)
〉
. (7)

Then, like Newton’s method, we update a⃗ by

a⃗← a⃗ − Ĥ−1
F (a⃗)⃗̂gF(a⃗), (8)

where ⃗̂gF and ĤF are estimates of g⃗F and HF by QAE, respectively. For this QAE-based Newton’s method, we have the following.

Theorem 2. Assume that F(a⃗) is twice-differentiable and µ-strongly convex, and that HF(a⃗) is M-Lipschitz. Then, for any
ϵ ∈ (0, µ/2M) and a⃗0 ∈ Rd satisfying δ0 := ‖a⃗0 − a⃗⋆‖ < µ/M, the QAE-based Newton’s method with initial value a⃗ = a⃗0 outputs
⃗̂a ∈ Rd such that

∥∥∥∥⃗̂a − a⃗⋆
∥∥∥∥∞ ≤ 2ϵ by nit-times updates, where

nit := max




log2


log

(
2Mϵ
µ

)

2 log
(

Mδ0
µ

)



+ 1, 1


, (9)

with a success probability higher than 99%. In the process, the total numbers of calls to {Pi}i=1,...,d, {Pi j}i, j=1,...,d and Pc are

N1stDer = O
(

d3/2

µϵ
nit log(nitd2)

)
, N2ndDer = O

(
δ̃0d3

µϵ
nit log(nitd2)

)
, Nc = N1stDer + N2ndDer, (10)

respectively.
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