QTML 2021
Quantum Techniques in Machine Learning
Booklet of Extended Abstracts
POSTERS - Part 11



QuTorch: A Quantum Torch Framing Quantum-Classical
Hybrid Neural Network for Chip-Based Quantum
Computing Accelerator

Junjie Hu"?", Yuxin Jin'T, Xijaojun Xu'?", Lina
Dong?®', Xiangyu Li'T, Zehui Tian'*T, Zhicheng Luo'T, Shiyu
Wang!?, Yingji Sun', Dandan Liu!, Zhiheng Yang', Shisheng

Chen!, Zheyong Zhang?, Bo Fang!, Fangyan
Zhang', Shunyang Shi', Hao Tang"?", Binju Wang®"
and Xianmin Jin"?"

L Algorithm& Application Department, TuringQ, Shanghai,
100190, China.

2" Center for Integrated Quantum Information Technologies
(IQIT), School of Physics and Astronomy and State Key
Laboratory of Advanced Optical Communication Systems and
Networks, Shanghai Jiao Tong University, Shanghai, 200240,
China.
3"State Key Laboratory of Physical Chemistry of Solid Surfaces
and Fujian Provincial Key Laboratory of Theoretical and
Computational Chemistry, College of Chemistry and Chemical
Engineering, Xiamen University, Xiamen, 360015, China.
4School of Naval Architecture, Ocean & Civil Engineering,
Shanghai Jiao Tong University, Shanghai, 200240, China.

*Corresponding author(s). E-mail(s): haotang2015@sjtu.edu.cn;
wangbinju2018@xmu.edu.cn; xianmin.jin@sjtu.edu.cn;
TThese authors contributed equally to this work.

Abstract

QuTorch is an open-source classical-quantum hybrid AI pack-
age developed by TuringQQ. This Torch-based framework is
designed for chip-based photonic accelerator system, which includes
modules of parameterized-quantum-circuits, quantum-intermediate-
representations,  Al-inspired quantum neural networks, and
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interdisciplinary hybrid algorithm applications. Based on quantum
circuits and PyTorch, QuTorch can be extented as you imagine.

Keywords: Torch-based hybrid classical, Al-inspired quantum neural
networks, Interdisciplinary applications, QuTorch

1 Extend Abstract

QuTorch is established in the aim of combining quantum computing with machine
learning and developing a powerful tool for constructing hybrid quantum-classical
models efficiently. Through investigation, numbers of open-source frameworks like
Qutip, Qiskit, Paddle Quantum, Tensorflow Quantum invoke quantum circuits and
build basic structures including gates, circuits and measurement. However, these
communities may confront challenges such as difficulty in interfacing with machine
learning, insufficiency of existing classical algorithm and inconveniently available
hardware. To inherit advantages of quantum circuits and fix aforementioned problems
as much as possible, QuTorch is designed with following characteristics: Quan-
tum Circuits-based; Capability to quantum machine learning(QML); Conveniently
Available Hardware; Simplicity and Multifunction. In actual execution, the CPU is
dominant to distribute computing tasks, and QPU is the quantum accelerator of the
CPU.

With the help of QuTorch which is friendly to classical Al developer, QStyleGAN
development becomes more efficient and meanwhile it naturally achieves a classic-
quantum mixing training process. Taking advantage of these, we focus on developing
the quantum part of QStyleGAN. To predict variation structure of COVID-19 and
map to other strains, we first encode several important COVID-19 variants to
quantum state in aim of adapting quantum circuits. Then, we build a brand new
QDiscriminator with equivalent network as the classical one. Noticeably, during
building QDiscriminator, we create a new quantum method called quantum-inspired
blur convolution, which achieves using a little parameters and extracting features.
Also, we succeed to downsample density matrix by using partial trace and therefore
QStyleGAN is capable of progressive training. In the process of training, it shows
that QStyleGAN is more stable and faster convergent than StyleGAN with multiple
loss functions.

Compared with experiments, computer-aided drug design can accelerate the pro-
cess of drug development and save time and cost. Drug screening is one of the most
important tasks of computer-aided drug design, which is of great significance for the
discovery of new drugs and the new use of old drugs. The combination between drug
and target needs to be specific and stable in order to give better play to its effi-
cacy. This requires an accurate description of the interaction between proteins and
ligands. This interaction is defined as binding affinity. Thus, accurately predicting
the binding affinity between protein ligands is the key to drug screening. With the
development of artificial intelligence, the application of deep learning to the binding
affinity of protein ligand complexes is booming. Based on the quantum Convolu-
tional Neural Network(QCNN) method, the parametrized-quantum-circuits(PQC)



were used to improve model performance. The various hybrid algorithm applica-
tions will be developed for protein-protein interaction, protein ligand interaction and
protein nucleic-acid interaction in drug design.

The model of reinforcement learning(RL) is a Markov process, which can be
described as the evolution of the state under the transition matrix. In this application,
the state is designed as the different representations of various structures in the
feature space of disorder crystal, and the action is designed to select the structure
within the similarity for phase transition. For enabling the agent to find the optimal
path, this method sets the agent to receive a reward of -1 for each step without
exceeding its threshold. While reaching the end point, it will get a larger positive
reward. The field of Quantum RL aims to take advantage of this improvement by
designing the PQC-based agents, which is based in the Qutorch framework and
designed to search the process of phase transition of photovoltaic materials.

Attention mechanisms are firstly proposed by Bahdanau, seeking to tackle the
bottleneck in encoder-decoder architectures that a fixed-length vector can not contain
all input information. Recently, attention mechanisms are wildly used in a variety of
tasks, not only in natural language processing such as machine translation, speech
recognition, text summarization, but also employed gradually in computer vision. We
propose a quantum-based attention mechanism, transferring the classic self-attention
mechanism to the quantum circuit to improve its parallel computing quality. Due to
the great parallel computing capability, implementing classic deep learning models
on quantum circuits can accelerate the computing process. In our coming research,
Attention-Q will be employed and evaluated on different models in different tasks.
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Variational quantum amplitude amplification eigensolver
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We develop a quantum algorithm that finds the ground states of a Hamiltoians as an
extension of variational quantum eigensolver (VQE) by combining with the quantum am-
plitude amplification (QAA), where the ansatz parameters are updated through QAA(-
like) process—thus, we named “variational quantum amplitude amplification eigensolver
(VQAAE).” VQAAE allows us to alleviate the landscape problem (often-called barren-
plateau), saving the classical computational resource.

Introducetion Computing the ground state is of fundamental and applied interest in physics and
quantum chemistry. However, solving the ground-state eigenproblem is usually intractable since
the requirement of the computational resource exponentially scales with respect to the system
size. Quantum computer is expected to solve the problem more efficiently. Herein, the variational
quantum eigvensolver (VQE) has actively been studied [1-6]. On the other hand, quantum am-
plitude amplification (QAA) is one of the celebrated quantum kernels in quantum computation.
For example, QAA can be casted to find a solution from unstructured database, which is known
as Grover’s algorithm [7]. QAA provides a quadratic speedup to find a target state from unstruc-
tured database, which is adapted in many applications such as cryptography [8, 9] as a subroutine.
In this work, we develop an extension of VQE by combining the QAA(-like) process, where the
ansatz parameters are updated via QAA without using any classical optimization. In this sense,
the proposed scheme is named variational quantum amplitude amplification eigensolver (VQAAE).

Variational quantum amplitude amplification eigensolver (VQAAE) Our VQAAE consists of two
main steps. In the first step, we apply QAA to the ansatz state designed by a set of controllable
parameters. After a single trial of the aforementioned process, we can obtain a state which is closer
to the ground state compared to the previous ansatz. We give more specifics below. For any N-
qubit system, we let the ansatz state be [(8)) = u(8)|0)®N where u(f) is a controllable unitary and
g is a vector whose components are the control parameters. Here, we additionally adopt an ancilla
qubit in [+)¢ = (|0)c+|1)¢)/v/2; hence, the trial state is |1(8)) = |+)c®|o(8)). We then introduce
the conditional Hamiltonian evolution such that U = > _ | |[7)(T|c ®i" exp((—1)7i7 H). Here, we
assume that: 1) the Hamiltonian H is normalized, and 2) its lowest eigenvalue is not degenerate.
These two assumptions are simply expressed as 0 < A\g < A1 < ... < A\nv_; < 1, where A;’s are
eigenvalues of the Hamiltonian H. This unitary acts like an oracle operation executing phase
marking onto the target state in quantum amplitude amplification. Another important operation
in our VQAAE is a kind of inversion operation (often-called Householder reflection), defined as
R(0) = I — 2[4(9))(x(6)|. By applying U and R(6) on the trial state [¢(f)) alternatively and
measuring the ancilla qubit, one can obtain the conditional states which is closer to the ground

— —

state. Namely, the conditional states |<p;ut|T(§)> = (i|cR(0)U(0))/\/pr with the probability

* joonsukhuh@skku.edu
T jbang@etri.re.kr



State Amplitude Estimation
preparation amplification of #
' '
i

— Estimate
0;

Figure 1. Quantum circuit representation of VQAAE.
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Figure 2. Left graphs is a plot of fidelity against the number repetition of VQAAE. Graphs (a)-(c) are plots
of expectation values of o, and o, obtained from a simulation on IBM-QISKit based local simulator and
experiments on IBM Q processors and IonQ.

pr = 1/2 to obtain an outcome 7 satisfy

[(olouttr (O = [(Rolo(0)) 1, (1)

where |\g) is the ground state corresponding to the lowest eigenvalue Ag. This relation is guaranteed
for any ansatz |¢(f)). However, if the initial ansatz has no overlap with the ground state, the
amplitude amplification does not work. The schematic of this process is illustrated in Fig. 1.

The second step is to update the control parameters as ] , so that we prepare a new
trial state |[)(6")). According to the relation (1), the conditional states are located closer to the
ground state in the state space of the system. This fact implies that one can extract parameter
information that give rise to |¢(6)) closer to the ground state. Hence, we update the parameters
by estimating them from the output state |¢out‘7(§)). Here, the estimation of ¢’ is accomplished
by the measurements with the pre-determined set of observables {O;}.

Ezxample 1: We first perform a proof-of-principle demonstration of VQAAE on IBMQ processor,
by considering a relatively simple Hamiltonian,

1 3
Hy = 710)(0] + 211l )
The ansatz is set to be |p(0)) = Ry(6)|0), i.e.,

p(0) = %(I + sinfo, + cos o). (3)

The set of observables related to the ansatz parameter 6 is given as {o,,0.}. In such a setting, the
ground state is obtained for § = 0.

We start our proof-of-principle experiments with an initial parameter § = 0.97, at which the
fidelity between p(0.97) and the ground state is ~ 0.024. As a result, we observe that the more
iterations of our VQAAE, the closer updated ansatz to the ground state. We plot the data of
fidelity vs number of repetitions in Fig. 2. The experimental data from IBM Q processor are good
agreement with the data yielded from a IBM-QISKit based local simulator, while the data from
IonQ are not. This is owing to the white noise immunity that we described above. We illustrate
this feature in Fig. 2(a), 2(b) and 2(c), where orange dots denote the expectation values obtained
from the Qiskit simulators, IBM Q processors and IonQ), respectively;
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Machine Learning Optimization of Quantum Circuit Layouts
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The quantum circuit layout problem is to map a quantum circuit such that the constraints
of the device are satisfied. We introduce a heuristic and its machine learning version. We
use a Gaussian function to estimate the depth of the circuits, and to focus on the circuit
region that influences most the depth. Our methods open the path to feasible large scale
compilation. The following is an extended abstract of [1].

I. INTRODUCTION

A quantum circuit is adapted to the device’s register connectivity during a procedure called
quantum circuit layout (QCL). QCL takes as input a circuit Cj, incompatible with a device’s register
connectivity and outputs a circuit C,y that is compatible. Additional gates are used to overcome the
connectivity limitations and compile a device-compatible circuit Cyy. QCL includes two steps [2]:
1) initial placement (e.g., [3]), where a mapping of the circuit qubits to device registers is computed,;
2) gate scheduling, where the circuit Cj, is traversed gate-by-gate. We define the Ratio function

between the depths of two circuits, where |C| > 0 is the depth of circuit C. We formalize the QCL
_ 1Cout
) o . Gl

Fast and scalable QCL allows laying out a circuit with multiple QCL parameter values and
selecting the best compiled circuit. This is not possible with current state of the art QCL methods.

optimization problem as the minimization of the function. Ratio(Ciy, Cout)

The core of our work is based on machine learning techniques. The novelties of our work are: a)
automatic feature selection - focusing on the important sub-circuit using a configurable Gaussian
function; b) automatic QCL configuration — we use weighted random search to optimize QXX
parameter values; ¢) demonstrating QCL learnability - the machine learning version QXX-
MLP works as an approximation method for the circuit layout depth; d) scalability - the almost
instantaneous layout performance. We demonstrate it by showing that QCL execution time can be
shortened and at the same time maintaining the Ratio optimality.

II. METHODS

QXX is a fast search algorithm that uses an estimation function to generate a C,,; with
minimum depth. QXX is called by the subsequent gate scheduler to compute a good qubit
allocation/mapping/placement. QXX uses a Gaussian-like function called G Depth to estimate the
resulting depth (cost) of the layed out circuit. The G Depth function is a sum of a Gaussian functions
whose goal is to model the importance of CNOT sub-circuits from Cj,. The qubit mapping is found
using the minimum estimated value of a function called G Depth.

QXX is a combination of breadth-first search and beam search. The search space is a tree.
Each tree node has an associated GDepth cost. The level in the tree equals the length of the
mapping for which the cost was computed. New depth estimation values are computed using the
GDepth function, each time leaves are added to the tree. QXX uses three types of parameters: 1)
for configuring the search space; 2) for adapting G Depth to the circuit Cy,; 3) for adapting QXX to
the second step of QCL.



The parameters of the normal QXX method are optimized using weighted random search (WRS)
[4]. The WRS method starts from an initial set of parameter values and adapts the values in order
to minimize the obtained Ratio. This procedure forms a feedback loop between WRS and QXX.

We developed QXX-MLP in order to learn the QXX algorithm. We considered multiple candidate
models, and found MLP to be the best model. We used it during the parameter optimization
stage as an approximator for the functionality of QXX. Running WRS multiple times for a set of
benchmark circuits is equivalent to almost executing an exhaustive search of the parameter space.
The exhaustive search data is collected and used to train QXX-MLP.

IIT. RESULTS

To benchmark overall performance we use synthetic benchmarking circuits, QUEKO|5] which
capture the properties of Toffoli-+H (e.g. arithmetic, quantum chemistry, quantum finance etc.)
circuits without being specific for a particular application, and have known optimal depths |Coy| =
|Cin|, meaning that the input circuit and the layout circuit have equal depths.

We use QXX for the initial placement (first QCL step) and the Qiskit StochasticSwap gate
scheduling for the second QCL step. The results depend on both the initial placement as well as the
performance of the StochasticSwap scheduler. We do not configure the latter and use the same
randomization seed. QXX achieves Ratio values around 50% lower (which means better — best
Ratio is 1) than Qiskit on the low depth (up to 15 gates) QUEKO TFL circuits. In general, the
performance of QXX is between Qiskit and tket [6].

We use a combination of WRS and QXX-MLP in an attempt to minimize the time required
to identify an optimal configuration. QXX-MLP and WRS are almost instantaneous. We do not
report times, because these were under 2 seconds for the entire batch of 90 circuits. In contrast, the
execution time of WRS using the normal QXX was about 3 hours to find the optimal parameters
for the 90 circuits (cf. Table 1).

The performance of QXX-MLP is more than encouraging: it had the performance of a timedout
WRS optimization. The WRS parameter optimization did not timeout, because MLP inference
is a very fast constant time operation. Our results support the thesis that WRS can adapt the
parameters of the QXX Gaussian curve in order to select the region of the circuit that influences
the total cost of laying it out. The G Depth function is relevant with respect to resulting layout
optimality, as well the speed of the layout method. For shallow circuits, WRS prefers Gaussian
centers close to the end of the benchmark circuits, meaning that the last gates are more important
than the others. For deeper circuits, WRS sets the Gaussian center to be closer to the beginning of
the circuit.

The WRS and QXX-MLP optimization takes a few seconds compared to the hours (cf. Table ?7)
necessary for WRS and QXX. This is a great advantage that comes on the cost of obtaining a
trained MLP, which is roughly the same order of magnitude to a WRS parameter optimization.
MLP training is performed only once. In the case where the MLP model is not used WRS parameter
optimization has to be repeated. In a setting where quantum circuits are permanently layed out
and executed (like in quantum computing clouds) incremental online learning is a feasible option.
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Figure 1. a) WRS time and average optimum Depth Ratios for two types of QUEKO TFL circuits: with
depth 45 and depth 25. The average Ratio is obtained for the non-MLP QXX method applied to the 90
benchmark circuits; b) Scalability — Depth Ratios are not affected by timeout durations: Laying out QUEKO
QSE circuits using parameters learned from QUEKO TFL circuits. Each parameter evaluation executed by
WRS was timed out after 5, 50, 500 and 2000 1/100th seconds (10 milliseconds).
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Extended abstract

In this work, we investigate the feasibility of a binary Quantum Neural Network-based classifier
developed using the integration of Cirq and TensorFlow Quantum and tested on a variety of hardware
accelerators to see if parallel computing can provide an advantage. Numerous amounts of data have been
generated, particularly in the last few years, which has witnessed a growth in the Big-data sector, and
research is underway to identify strong and favourable techniques to analyse and understand data in faster,
more efficient, and less chaotic ways. Moore's Law's recent developments haven't been encouraging,
owing to the curve's progressive saturation, which has prompted us to look into various pathways of
unorthodox computing methods that could help alleviate the current growing computing needs of industry
and academia. Applied physics, biomedical engineering, chemical simulations, cryptography, and finance
are just a few of the fields that require advanced data management and machine learning techniques.
Several milestones have been neared, especially concerning Quantum Hardware with advances in the
manufacture of qubits, scalability, error, and noise reduction increasingly convincing academia of the
purported power of Quantum Computing in addressing the current shortage of computational power and
the challenges of computational complexity. TensorFlow Quantum, a quantum machine learning library
that enables quick prototyping of hybrid quantum classical ML models, is used in our research. It
integrates quantum computation algorithms and logic designed in Cirq, a Python software library for
manipulating, writing, and optimising quantum circuits as well as running them on quantum computers
and quantum simulators with quantum computation primitives that are compatible with existing

TensorFlowAPIs as well as high-performance quantum circuit simulators.
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Bounds on approximating Max kXOR with quantum and classical local algorithms

Kunal Marwaha* and Stuart Hadfield

Hybrid quantum-classical methods offer a new paradigm for tackling challenging learning and optimiza-
tion tasks. While quantum approaches to combinatorial optimization such as the quantum approximate
optimization algorithm (QAOA) [2] have attracted much recent attention, relatively few results are known
concerning their potential for quantum advantage. To clarify this, a recent line of work has sought to com-
pare the performance of low-depth realizations of QAOA with local classical algorithms, where in each case
the algorithm’s output for each variable depends only on a fixed neighborhood around that variable. We
continue this research direction on the combinatorial optimization problem Max kXOR, a generalization of
two problems previously studied with quantum algorithms (MaxCut and Max E3LIN2).

We start by analyzing the depth-1 QAOA and a natural generalization of the threshold algorithm [4] on
regular, triangle-free Max £XOR instances. This comparison is motivated by the algorithms’ similar per-
formance on MaxCut [3, 5]. On instances with either random signs or no overlapping clauses and D + 1
clauses per variable, we calculate the average satisfying fraction of both algorithms. Notably, the quantum
algorithm outperforms the threshold algorithm for k > 4.

On the other hand, we highlight potential difficulties for the QAOA to achieve computational quantum
advantage on this problem. We first identify the optimal satisfying fraction of large random instances for all
k. We do this by conducting numerical calculations of the ground state energy density P(k) of a mean-field
k-spin glass [6] for all £ < 35. Both algorithms perform far from optimally as k increases. We observe the
value P(k) converges to v/21log?2 (its large-k limit) by k = 15.

We also identify a new obstruction result for low-depth quantum circuits (including the QAOA) when k = 3,
generalizing a result of [1] when k& = 2. Obstructions rule out low-depth circuits from providing quantum
advantage for optimization on some problems. We extend the NLTS result from quantum circuits with global
bit-flip X ®V (Z3) symmetry, such as QAOA for MaxCut, to those where the circuit unitary commutes with
an operator X®V+| acting on a large, fixed subset V. C V of qubits. We call this partial Zo symmetry:

Theorem 1 (informal). There exists a family of Hamiltonians with partial Zo symmetry that have no low-
enerqy states accessible from low-depth quantum circuits with the same partial Zo symmetry.

The Hamiltonians we construct are instances of the Max 3XOR problem. The QAOA unitary inherits the
symmetry from the problem instance. This implies the following:

Corollary 1 (informal). There exists a family of fully-satisfiable Maz 3XOR instances where the QAOA
can only satisfy 99% of clauses until depth at least logarithmic in the problem size.

We conjecture this partial Zy symmetry technique can be extended to show a constant-fraction obstruction
to QAOA at every k.
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Abstract

In this paper, we explore the feasibility and expressibility of using Quantum feature maps for
binary classification problems to leverage their rich data representation in Hilbert space. We clas-
sify Quantum feature maps generated on synthetic datasets using QSVM and propose a two-stage
pipeline for binary classification of real images.

1 Introduction

Machine learning models inherently learn probability distributions of the target labels given a set of
tunable parameters. However, the intrinsic nature of Quantum Computing results represents real-
world probability distributions making it an ideal candidate to bolster current Machine learning
models. Quantum Computing in principle can provide exponential speedup over classical systems
by utilizing quantum properties like entanglement, superposition, and, interference [1]. Quantum
systems like variational circuits can access higher-dimensional space (Hilbert Space) to produce
highly expressive machine learning models [2]. Although many quantum systems are not useful
in this Noisy Intermediate-Scale Quantum (NISQ) era some of them inherently mitigate error [3].
These properties of a quantum system coupled with its ability to solve intractable problems make it
a lucrative field for research and investigating practical quantum-inspired applications. Generally,
the accuracy of QML models is lower than their classical counterparts but its compensated by
speed and scalability. Hybrid approaches are being followed to exploit the strength of both worlds.

Quanvolutional neural networks are quintessential ConvNets with an essential modification
for richer feature extraction [4]. Quantum transformations are employed as filters at the convolu-
tion layers. These transformations can provide a qualitative advantage and can be used on NISQ
devices due to their noise-resilience from inherent shallow circuits. This hybrid quantum-classical
solution is also easier to integrate into current deep learning frameworks. We use a Quanvolutional
Neural Net to generate the feature map for our experiment. We also use a Quantum Support Vector
Machine (QSVM) for binary classification by utilizing a quantum kernel estimator to estimate the
kernel in the feature space [5].

2 Experiment and Results

A Quantum optimiser, due to inherent parallelism, can find the global minima accurately. As
a result, feature maps generated are accurate and able to find decision boundaries precisely. In
previous works, PCA is used to limit the data samples ingested to the Quantum algorithm. Instead
of PCA, the most relevant samples representing the class generated at the Penultimate layer of a
CNN/Quanvolutional encoder or Autoencoder can be used. It provides a better and explainable
representation apart from making the decisions relevant to the data.

In this initial experiment, a two-class classifier is proposed over both quantum only and
quantum-classical hybrid approaches. The usage of the most relevant features to segregate the
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classes instead of Principle Components is proposed to make the decisions relevant and explain-
able. Here the synthetic random data for a two-class classifier is considered. Instead of PCA, the
two most relevant samples of the penultimate layer of the 28 layers AlexNet are taken and ingested
to the variational quantum circuit running over a Two QBit system. The feature maps generated by
conventional and quantum algorithms are provided are illustrated in Figure 1 and Figure 2. We can
see that the quantum feature map can distinguish the classes very well. The Implementation was
carried out over an IBM Quantum computer. This generated feature map is then fed to a Quantum
SVM classifier. The performance was close to a classical SVM classifier.

Afterwards, we found an interesting use case to demonstrate the real-world significance of
Quantum Computing. We started working on a binary classification problem of Surface crack
detection on concrete surfaces with real-world data [4][6].

2.1 Surface defect detection

Surface defect detection is one of the key aims of the quality control process in any large manufac-
turing setup like the automotive industry, Basic Metal Production industry, etc. Detecting defects
such as hairline cracks, scratches, abrasions etc is not easy and any human errors in detecting this,
can shorten the serviceability of the product and at times might lead to safety issues. Automatic
defect detection can not only avoid human errors but also adapts to an unsuitable environment thus
improving production efficiency and product quality. We experimented with a Quanvolutional neu-
ral network for this problem [4]. Even after multiple efforts to tune the number of layers, channels,
qubits, rotations, encoding we found discouraging results i.e very low test accuracy [Figure 3]. It
seemed to encounter barren plateaus or overfit in most cases. To find a solution to this problem in
our ongoing experiment we have proposed a cascaded pipeline that utilizes Quantum feature maps
as follows:

o Pass the image through an initial Quanvolutional Layer (Fine-tuned).
e Obtain the feature map generated at the output of the Quantum Convolution Layer.

o Feed this feature map to our QSVM for classifying the images as cracked or not cracked.
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—e— Without quantum layer
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Figure 1: Classical Figure 2: Quantum Figure 3: QCNN

3 Conclusion

With the advent of large noise-free Quantum systems near, it is important to assess, experiment
with the feasibility and capacity of current Quantum machine algorithms on real-world problems.
We experimented with the feasibility of using Quantum Feature Maps for binary classification
using a QSVM on synthetic data and found lower but comparable accuracy with a classical SVM.
We are currently experimenting with using a two-stage quantum pipeline on a real-world binary
classification problem.
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We generate highly entangled states in a discrete time quantum walk irrespective of the initial state using a
deterministic sequence and a reinforcement learning algorithm. Our methods are useful when the initial state is
not fully known or entanglement has to be generated universally for different initial states.

Machine learning has already achieved remarkable results in various areas of physics and different machine learning ap-
proaches have been combined with quantum walks for exploring quantum speed-up [1, 2] and graph structures [3]. Reinforce-
ment learning (RL) has also been successfully applied to challenging problems in quantum physics including quantum state
preparation [4, 5], quantum optimal control [6, 7], and quantum error correction [8, 9].

We use a RL technique to tackle the optimization of entanglement in quantum walks. Entanglement is a key resource in many
quantum information applications and achieving high values independently of the initial conditions is an important task. While
most often entanglement between different states of the same degree of freedom is considered, more recently the so-called hybrid
entanglement between different degrees of freedom has been of interest [10]. If these degrees of freedom belong to the same
particle, more information can be encoded at the single particle level, which helps to reduce required resources.

We discuss the generation of hybrid entangled states that can be created in discrete time quantum walks, where the motion
of a particle that moves in a high-dimensional discrete space depends on an internal, two-dimensional coin degree of freedom
[11]. The evolution itself consists of the recurrent application of a coin and shift operator which in general leads to entanglement
between the walker and coin. To be experimentally realistic we restrict to Hadamard and Fourier coins only and aim at a minimal
number of steps.

In contrast to previously employed optimization schemes [12—14], RL allows us to not only find the optimal sequence of coin
operators for a specific initial state but also for classes of initial states. The resulting optimized coin sequences achieve on average
higher values of entanglement than the deterministic (universal) sequence of coin operators. While the amount of entanglement
produced by the deterministic sequence is fully independent of the initial states considered, the optimized sequences achieve in
general higher average values of entanglement that do however depend on the initial state parameters. Our proposed sequence
and optimization algorithm are especially useful in cases where the initial state is not fully known or entanglement has to be
generated in a universal manner for a range of initial states.

Our work extends existing results that either achieve state independent entanglement only in the asymptotic limit of an infinite
quantum walk [12] or that achieve maximal entanglement in a short sequence, but not independently of the initial state [13, 14].
Furthermore, our RL scheme can be useful in a variety of other, experimentally relevant settings. For example, one could restrict
the class of initial states to match the experimental problem, such as a fixed initial state with noise. The RL objective can also be
altered in different ways. One could for example choose to maximize the fidelity between the final state and a given target state.
Another option is to apply the techniques to higher dimensional quantum walks [15], quantum walks on graphs [16], or quantum
walks involving more than one particle [17]. Additionally, one could move to the continuous case and use deep reinforcement
learning to directly optimize the parameters in the coin operator.

The full article can be found here: https://iopscience.iop.org/article/10.1088/1751-8121/abbb4d.
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ABSTRACT

This work presents a method to perform non-parametric density estimation in R? in a quantum com-
puter. The method uses a quantum feature map based on random Fourier features to build a density
matrix, Pirain, that summarizes the training data set. A quantum circuit prepared with pgain €stimates
the density of a new sample =* by calculating the amplitude of the projection of pi;ain On the quantum
state representing x*.

Introduction.— The problem of density estimation is given a sample X = {z1,...,zxn}, find a function f that
approximates the true probability density function (pdf) of the distribution from which X was generated. Many tasks
in machine learning can be approached as density estimation problems: supervised learning can be seen as the problem
of estimating the joint probability of inputs and labels P(X’, )), while unsupervised and generative learning can be
addressed by estimating the probability P(X’). A quantum density estimation routine may serve as a building block
for developing different quantum machine learning algorithms, e.g. anomaly detection [1] and generative models [2].

The quantum formalism can be seen as a generalization of classical probability. A density matrix in an d-dimensional
Hilbert space can be viewed as a catalog of categorical distributions on the finite set {1...d}. If we want to efficiently
model continuous probability distributions in R?, a direct application of this fact is not very useful. In [3] we show
that it is possible to model arbitrary probability distributions on R? using finite-dimensional density matrices together
with random Fourier features (RFF) [4]. In this work, we use this idea to build a quantum circuit that is able to perform
multivariate continuous density estimation.

The method can be seen as a quantum implementation of the very well known Kernel Density Estimation (KDE) [5, 6],
also known as Parzen-Rossenblat window density estimation. The method overcomes one of the main weaknesses of
KDE namely the fact that it is a memory-based method that requires storing the entire data set to make a prediction.
This is done by summarizing the training dataset as a density matrix. The density matrix is the average of a quantum
feature map based on RFF [4]. Thanks to this, the associated quantum kernel [7] approximates the Gaussian kernel,
and performing a measuring over a particular quantum state approximates the estimation of a Gaussian-kernel-based
KDE.

The method.— During training we calculate a density matrix that summarizes the training dataset, X = {z;}i=1. N
with z; € R%, as follows:
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Multivariate Continuous Density Estimation in a Quantum Computer

1. Given a RFF embedding, ¢, : R? — RP, with the property that Vz,y € R, k(z,y) ~ (¢ (z), e (y)),
where k is the Gaussian kernel, define the quantum feature map |Gy (z)) = 3 y % |7), where |7) is the
bit string multi-qubit state corresponding to the binary representation of j.

2. Calculate |Uin) = SV | o () )

During prediction, the density of a new sample x is calculated by the Born rule, fptrain(az) =
ML«, <¢rff ($)| Ptrain
Ptrain = |\Ijtrain ><\I/train ‘ .

¢rii(z)), where M, = (71‘/’}/)%, with ~ the spread parameter of the Gaussian kernel, and

The circuit.— In [3] we showed how to implement a more general version of the above method, which uses a mixed
density matrix, in a classical computer as a differentiable model that can be also trained using gradient descent. Here,
we demonstrate that we can use a quantum computer | (IBM Lima) to realize probability density estimation.

The density estimation circuit must compute <¢_Srff(:1:)| Ptrain }Q_Srff(m)>. This is equivalent to measuring the amplitude
of the projection of |Wy,,iy) onto ‘érg(x)>. This can be done with a gate Uy that prepares |Wy,,in) for a given data set,
followed by the inverse of a gate U, that prepares the state of a single sample point where the density is to be estimated.
Therefore, density estimation is achieved by estimating, through multiple shots, the quantity |(0"| Ug(X )U*Jr (x)]0™)] 2,
where n = [log, D] is the number of qubits that encode the D-dimensional random Fourier features space. In
other words, the density is estimated by measuring the frequency of the 0 bit string after applying Uy(X ) and Ul (z)

consecutively to the state [0™).

Results.— We tested our framework with a simple dataset distributed on two overlapping Gaussians, as shown in
the rug-plots in fig. 1. A total of three qubits were used to encode 8 random Fourier features, which are sufficient
to generate a high-quality density estimation, close to the classical Gaussian kernel density estimation shown in the
orange lines in the panels of fig. 1. Our density matrix kernel density estimation method was simulated on an ideal
quantum circuit, on a noisy quantum circuit’, and run on the IBM Lima quantum computer, as shown in the left,
central and right panels of fig. 1, respectively.

3.0 1 — ideal
— kde

— real

—— noisy

0.0 - = : T ETERTRTTT WTTTTR -

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X X

Figure 1: Density estimation (blue points) of bi-Gaussian-distributed data with exact circuit simulation (left), noisy
circuit simulation (middle) and run on the IBM Lima quantum computer. Orange lines are computed through regular
Gaussian kernel density estimation. 1024 shots were used to estimate every point on a (simulated or real) quantum
computer. Confidence intervals are computed with the asymptotic normal approximation of the Bernoulli distribution
from which measurements are sampled.

'A qubit-based quantum computer. However, we have also shown that the method can be implemented in qudit-based quantum computers [8]
2The noisy quantum circuit is modeled in giskit [9] by considering initialization, readout, depolarizing and thermal relaxation errors measured
on each device, as reported by IBM.
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Abstract

The present and future Quantum Machine Learning architectures involve a synergetic combination of quantum and
classical computations. In this poster, through a set of representative results, how classical preprocessing in terms of
appropriately engineered features can influence the performance of quantum classifiers for a given number of qubits,
is brought out. The study is carried out through simulations using Gearbox and Bearing Fault Data set.

1. Quantum Machine Learning

Quantum Machine Learning (QML) is at the crossroads of two of the most exciting current areas of research: quantum
computing and classical machine learning [1]. In QML, the proposition is to enhance the performance of machine
learning tasks by using quantum computers, like, improving the accuracy, reducing the number of training samples,
speeding up the process of training and inference, among others. In the present Noisy Intermediate Scale Quantum
(NISQ) computing era, the hybrid quantum-classical processing has established itself as an essential combination, and
this “cooperation” will continue for a long time.

2. Gearbox Data set and Classification

One of the well studied task in QML is the supervised learning, in particular, classification. In this work we have
considered the Gearbox and Bearing Fault Data set (see [2] and the references therein), where, the data is collected
through Drivetrain Dynamic Simulator. In the existing classical Machine Learning/Signal Processing works, different
time domain and frequency domain features are used to classify four different faults for both gearbox and bearings,
along with the healthy state.

3. PCA and Feature Selection

A standard procedures in QML is to reduce the feature vector size (dimensionality reduction) through classical Princi-
pal Component Analysis(PCA) to map the data into fewer qubits for both quantum simulators and NISQ implementa-
tion. Instead of invoking PCA preprocessing, we explored selecting the right smaller subset of features. The rationale
is, since classical computing is already an integral part of the quantum classifiers, either the variational or support
vector machine versions, we can use it for feature engineering as well. For the fully classical results, the root mean
square value and variance have been identified as discriminating features for the task at hand (see [2]). The selection
can be carried out by considering recursive feature elimination, for example.

4. Implementation of Multi-class Classification

Fig. 1 portrays the variational quantum classification scheme employed in this work, specifically, Rz encoding was
used, followed by an ansatz of strongly entangling layers. We implemented multi-class classification by considering
one-versus-one binary classifiers (see Fig. 2). For this poster, we started with the 6 extracted time-domain features;
Root Mean Square value, variance, maximum value, kurtosis, skewness and peak-to-peak value. Since categorization
of the features has to be done into 5 different classes, we need (g) = 10 binary variational quantum classifiers for
each comparison scenario. The five possible categories for the Gear Box are - chipped tooth, missing tooth, root fault,
surface fault and healthy. Further, we have two different sets of classifiers - one for a subset of original features and
the other for PCA-reduced modified features. Needless to say, for testing or inference, appropriately trained classifiers
are utilized for either the selected features or PCA-reduced vectors.
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R; Encoding Ansatz

Fig. 1: Quantum Circuit with 3 qubits (for illustration purposes) used for binary classification. The parameters to the
Rz gates in the encoding layer accommodate the inputs, while the parameters in the ansatz are optimizable.
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Fig. 2: Block Diagram of the training phase.

5. Results and Discussion

As a preliminary examination, we carried out simulation studies by considering all the six time-domain features and
the aforementioned two engineered features. In order to compare with the standard pipeline, we also considered re-
ducing the 6 features to two Principal Component values. With the variational classifier involving only simple Rz
rotations for data encoding (to quantum states), we found that the engineered features gave 100% accuracy for nine
one-vs-one classifiers out of 10. The results are captured in Table 1 and in all the cases, two properly engineered fea-
tures outperformed the PCA scenario. The trained models were tested against a new batch of 255 data points and the
accuracy achieved for the multi-class classification was 85.49% for the representative features, 92.16% when all the
features were considered, but reduced to an abysmal 45.49% for the PCA-reduced feature vectors; and the misclas-
sifications were between classes 3 and 5, as per expectation. This demonstrates the efficacy of using data set specific
feature-engineering over generic techniques such as PCA. Further experimentation can be carried out to improve the
accuracy by considering different data encoding strategies (say, ZZ feature maps), on which work is underway. One
can also consider building an ensemble of classifiers on a couple of subsets of (engineered) features and using them
for the final inference. More systematic construction quantum multi-class classifiers with engineered features rather
than primitive one-vs-one and one-vs-rest can be another useful thread.

1-vs-2 | 1-vs-3 | 1-vs-4 | 1-vs-5 | 2-vs-3 | 2-vs-4 | 2-vs-5 | 3-vs-4 | 3-vs-5 | 4-vs-5
All Features | 100 100 100 100 100 100 100 100 69.23 100
2 Features 100 100 100 100 100 100 100 100 61.53 100

PCA 57.69 | 69.23 | 84.61 | 80.76 | 61.54 | 57.69 | 76.92 | 69.23 | 57.69 | 46.15

Table 1: Accuracy metrics obtained from VQC using all the 6 features, the 2 best representative features, and PCA-
reduced feature vectors.
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ABSTRACT

This work explores how density matrices can be used as a building block for machine learning mod-
els exploiting their ability to straightforwardly combine linear algebra and probability. One of the
main results of this work is to show that density matrices coupled with random Fourier features could
approximate arbitrary probability distributions over R™. Based on this finding the work builds differ-
ent models for density estimation, classification and regression. These models are differentiable, so
it is possible to integrate them with other differentiable components, such as deep learning architec-
tures and to learn their parameters using gradient-based optimization. In addition, the work presents
optimization-less training strategies based on estimation and model averaging. The models are eval-
uated in benchmark tasks and the results are reported and discussed. This extended abstract is based
on arXiv:2102.04394 [1].

Introduction.— The formalism of density operators and density matrices was developed by von Neumann as a foun-
dation of quantum statistical mechanics [2]. From the point of view of machine learning, density matrices have an
interesting feature: the fact that they combine linear algebra and probability, two of the pillars of machine learning, in
a very particular but powerful way.

The main question addressed by this work is how density matrices can be used in machine learning models. One
of the main approaches to machine learning is to address the problem of learning as one of estimating a probability
distribution from data, joint probabilities P(x,y) in generative supervised models or conditional probabilities P(y|z)
in discriminative models.

The central idea of this work is to use density matrices to represent these probability distributions tackling the im-
portant question of how to encode arbitrary probability density functions in R" into density matrices. This is accom-
plished by using random Fourier features (RFF) [3] as a quantum feature map. The RFF method builds an embedding
éegr - R? — RP given a shift-invariant kernel k& : RY x R? — R such that Va,y € RY, k(z,y) ~ (¢ug(x), bt (v)).
Given a training dataset X = {z;};—1.. n with z; € R%, a training density matrix is built as the average of the density
matrices of each training sample, pirain = % Zf\i 1 |oesr(24)) (Prmr(x;)|- The density of a new sample is calculated by
applying the Born rule, fpmin (x) = ﬁ (Do ()| ptrain |Prsr(2)).

Methods.— Based on the idea described above, different models for density estimation, classification and regression
are defined. The models can be trained using two different strategies: one, using averaging of the training density
matrices; and two, thanks to the fact that the models are differentiable, using stochastic gradient descent over the
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Lerning with Density Matrices

parameters to minimize an appropriate loss function. The models can be integrated as layers in conventional deep
neural networks and can be easily implemented in GPU-accelerated machine learning frameworks. Figure 1 shows
three of the models, which are briefly explained next.

Density matrix kernel density estimation (DMKDE) (Figure 1a). The model receives an input = € RY, represent it
using a RFF quantum feature map, ¢,g, and estimates the density of it using the Born rule. The model can be trained
by averaging the density matrices corresponding to the training samples or by using stochastic gradient descent.

Density matrix kernel density classification (DMKDC) (Figure 1b). The extension of kernel density estimation to
classification is called kernel density classification [4]. Following this strategy, DMKDC uses DMKDE to estimate
the likelihood of a given sample for the different classes and applies the Bayes rule to obtain the class posteriors.

Quantum measurement classification (QMC) (Figure 1c). This model generalizes DMKDC to deal with more general
probability distributions of the outputs. The idea is to model the joint probability of inputs and outputs using a density
matrix. A prediction is made by performing a measurement with an operator specifically prepared from a new input
sample, producing a density matrix.

~/ ~/

n T Yi,
T T Py
[ Class normalization ]
fol2) 71 = fi(x) Uk = fr(x)
8 Quantum o Quantum Quantum
uantum Measurement Measurement
Measurement MeasuLment
1 m(x)
Orfr ($) L
Measurement
Normalization Normalization Operator
A
x(T
G () bt () dx(x)
Quantum
RFF RFF Feature Map

T T

:

x x
(a) DMKDE (b) DMKDC (c) QMC
Figure 1

Experimental evaluation.— Some experiments were performed to evaluate the performance of the proposed methods
in different benchmark tasks for density estimation, classification and ordinal regression. The experimental results
showed that the models exhibit a competitive performance providing evidence that density matrices are a useful
component to build competitive machine learning models.
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Short Abstract
Quantum classifier models are examined for classifying genes using RNA sequencing
data whether or not they are involved in SARS-CoV-2 infection pathways, and compared
with commonly used classical classifiers. Results show that quantum models have similar
accuracy to classical models, thus providing a practical application of quantum classifiers.
Objective of the work
The variational quantum classifier model [1] [2] turns to be an important practical

application of NISQ machines. A recent work [3] has shown that depending on the dataset
and data embedding, quantum classifiers may outperform classical models. It is highly
anticipated to find practical examples of variational quantum classifiers. Also, one of the
most significant tasks for the scientific community since the COVID19 pandemic began is
to understand what gene expression is affected by the COVID19 infection. Motivated by
these circumstances, this paper aims to train a quantum model to classify whether or not
a gene is involved in the SARS-CoV-2 infection pathway by using RNA sequencing data.
Methods and Results

1. RNA Sequencing Data

The dataset used in this study is Series GSE147507 (Series 6 and 16) [4] in the GEO
database [5], which show transcriptome changes of A549 cells (i.e., adenocarcinomic human
alveolar basal epithelial cells) and A549 cells overexpressing ACE2, both infected with SARS-
CoV-2. ACE2 serves as the entry point for SARS-CoV-2. The data is presented as a table
with integer counts in each cell. These values represent expression levels of each gene in
each biological sample. Each biological sample was obtained from a different condition,
which allows observations of how cells react to different environments. The ground truth
labels for the genes was determined by using 11 different infection-related pathways in
the KEGG database [6]. 51 infection related genes and 53 unrelated genes were chosen for
the entire dataset, with each gene having 12 features (counts from 12 different biological
samples). Training dataset and test dataset was split 4:1.

For data preprocessing, 12 features were grouped into 6 pairs, and the expression level

change between them was calculated using log, fold change. This was reduced to 3
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feature dimensions using PCA, then resized so that each feature is in [0, m].

2. Variational Quantum Classifier

‘ Quantum Feature Map ‘ ‘ Variational Circuit ‘ The quantum models used in this study is the

/ variational quantum classifier. The classifier

o

consists of a quantum feature map and a
Ve w(6) variétional circuit. The n | qubit compulltational

basis measurement result is used as an input to
a fixed function f: {0,1}" - {1,—1}. One assigns
label y to X if Pr(f(¥) =y)>Pr(f(xX) = —y) —

yb for fixed constant b. The variational circuit is

o}

Figure 1. Variational Quantum Classifier

trained to minimize the empirical risk on the training dataset.

The IQP-style circuit proposed in [1] was used for the Ug s, circuit. The ®(¥) functions
tested was the function used in [1] (denoted as ¢,) as well as ¢,(X) = X[m] + ¥[n],
¢z (%) = mcos(Z[m]) cos(X[n]), p, (%) = neXp((f[mjff[nDz)_l rotation angles for ZZ rotations
between qubit m and n. These functions were inspired by those analyzed in [7]. For the

variational circuit, 2 layers of 3-qubit versions of circuit 12 and 4 discussed in [8] were used.
The function f was chosen so that if the majority is bit O, label is 1 and if the majority is
bit 1, the label is -1. b is fixed to be zero. An SPSA optimizer was used to train the circuits.
10000 shots were used to calculate the probabilities. SVC implemented in the python
library sklearn with radial basis function kernel was the classical model used. The
hyperparameter C was tuned to maximize test accuracy. Some of the training results are

shown in the below table.

- Classical
. Quantum Classifier .
Classifier Classifier

¢, Circuitd | ¢, circuitd | ¢s.circuitd | ¢y circuitd | ¢, circuit12 | SVC, €=32

Test Accuracy 0.6667 0.4762 0.5238 0.7619 0.6667 0.7143

Table 1. Classifier Training Results

The quantum classifier using ¢, and circuit4 showed slightly better results compared
to the classical classifier. Using quantum metric learning to search for better feature maps
could be attempted to improve the quantum classifier, as proposed in [9].
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Deep tensor networks with matrix product operators
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Abstract

We revisit the image classification problem with matrix product states (MPS) by applying an
extensive augmentation hyperparameter search. Obtained test error rates are 0.37% (MNIST), 7.6%
(FashionMNIST), and 37.2% (CIFAR10). We further improve the MPS baseline models by introduc-
ing deep tensor networks based on the matrix product operator formalism.

1 Introduction

Tensor networks are ubiquitous in the field of low-dimensional many-body quantum physics due to their
effectiveness in modelling short-range correlations and the locality structure of prototypical quantum
Hamiltonians. Motivated by the success of describing quantum amplitudes tensor networks have been ap-
plied also to other domains (e.g. image classification [SS16, Sto18, EHL19, LRW 19, MVRL20, MZZ*20,
CPD21, KLH21], generative modelling [CWXZ19, ST19, SPL*20, LLZZ21], sequence and language mod-
elling [PV17, GJLP18, BST20, BV20], anomaly detection [WRVL20, SSL*20]) with no apparent struc-
ture, that might justify their use. Recent studies of correlations in several image datasets (MNIST,
FashionMNIST, CIFARI10, TinyImages) [CCW18, MVRL20, CHLW21, LKNKC21] imply a limited util-
ity of tensor networks (in particular matrix product states) for image classification and generation due
to the existence of long-range correlations. Further, the state-of-the-art tensor networks achieve lower
accuracy on simple image datasets (MNIST, FashionMNIST, CIFARI10) than the best or even bench-
mark neural networks. We partially fill this gap by using a tuned augmentation and deep tensor network
models based on matrix product operator formalism.

We revisit the problem of image classification with matrix product states (MPS) and significantly
increase the accuracy of MPS classifiers by using image augmentation (Section 2). We obtain an error
rate of 0.37% on the simple MNIST dataset and 7.6% on the FashionMNIST dataset. In contrast, we
achieve only 62.8% accuracy on the CIFAR10 dataset. We also evaluate the performance of transnational
invariant models on the same datasets and find significantly lower performance in all cases. We also
assess all models on the datasets with permuted inputs and find slightly larger error rates than in the
non-permuted case. Finally, in Section 3, we introduce deep tensor networks based on the matrix product
operator formalism and evaluate their performance on the MNIST dataset.

2 Baseline MPS models

We perform image classification with the MPS models in two steps. In the first, we embedded the image
. . . . . . 1-—-

into a high dimensional Hilbert space via a local map © — ¢(z) = [ . x} where z € [0, 1] denotes
the scaled pixel intensity. Then a linear classification is performed as a maximum of the scalar products
of the embedded vector with matrix product state vectors representing different classes. We chose the
following matrix product state representation for a class ¢

n

Wo= = D0 (AP AP ATEB AT AT )(s1) @ 0(s2) @ b(sn), (1)

81,582,...8n=1

where s; € {0,1} and A;j , B¢ are D x D matrices with a fixed bond dimension D. The logits for a given
input are then given by I = ¥, - ¥(z). We chose the initial condition such that the logits are close to
one for any input z. In particular we chose [A;j lij = Ip + R;, where Ip denotes a D x D identity matrix
and R; a D x D matrix with normally distributed elements with mean zero and variance e. We use
the standard cross-entropy loss with L2 regulariza@n of the MPS matrices. In our final (best) setting,



we use batch size 500, AdamW optimizer, and reduce the learning rate on a plateau with v = 0.5 and
patience 20. We determine the optimizer has as a part of the hyperparameter tuning together with the
augmentation.

2.1 Augmentation

We use torchvision to augment the dataset images and performed hyperparameter tuning for the various
transformation parameters and probabilities. In particular, we use the following sequence of transfor-
mations: random pixel shift, random colour jitter, random sharpness, random Gaussian blur, random
horizontal flip, random horizontal flip, random affine, random perspective, resize, crop, random elastic
transformation, random erasing. We also tune the probability of applying each random transformation
while keeping the order of transformations fixed. During hyperparameter tuning, we restrict the training
to a maximum of 30 epochs.

2.2 Results

After finding the best hyperparameters, we train an MPS model and a translational invariant MPS
model (TI-MPS) at increasing bond dimensions and standard and permuted datasets. In the following
table, we report the error on MNIST and FashionMNIST test datasets. Along with mean error rates
and standard deviation of the 10-fold cross-validation, we also report results for ensembles obtained by
averaging logits of the obtained models. In the permuted case, we report the results for ensembles with
the same permutation (Ens. Same) and different permutations (Ens. Rand) of the inputs in each model
in the ensemble.

MNIST (%) | pMNIST (%) | FashionMNIST (%) | pFashionMNIST (%)
MPS 0.50 £0.03 | 0.73 £ 0.08 8.45 £ 0.13 9.00 £ 0.13
MPS Ens. Same 0.37 0.46 7.57 8.02
MPS Ens. Rand / 0.49 / 8.27
TI-MPS 0.71 £ 0.07 | 4.02 £ 1.28 11.23 £ 0.26 16.37 £ 0.38
TI-MPS Ens. Same 0.46 2.32 10.80 15.63
TI-MPS Ens. Rand / 1.69 / 14.04

Our best MPS ensemble models achieve comparable results to neural network and mixed (tensor + neural
network) approaches on the MNIST and FashionMNIST datasets [GPC18, MPG19]. Besides, our results
indicate that linear mutual information scaling with the system size might not be an excluding indicator
for good classification performance, as suggested in [LKNKC21]. Namely, the accuracy of the MPS
models does not drop dramatically on the permuted datasets, where we expect a volume-law scaling.

3 Deep tensor networks with matrix product operators

Although we were able to obtain good results on the simple MNIST and FashionMNIST datasets, our
results on the CIFAR10 dataset are far below the best neural network approaches [DBK'20]. The
latter might be due to a sub-optimal Hilbert space embedding or a small bond dimension and a thus
limited amount of correlations between distant pixels. To solve these problems, we propose a non-
linear transformation of the Hilbert space embedding based on the time-dependent variational principle
for matrix product states [HLO116] (MPS-TDVP). The local embedding (feature) vectors are first L2-
normalized and then one or more times transformed with an MPS-TDVP determined by matrix product
operators (MPOs) of fixed bond-dimension. The non-linear MPS-TDVP transformation is almost the
same as in [HLOT16]. The main difference is that the calculation of the effective Hamiltonians is done
for all sites (feature vectors) at the same time and not sequentially as in [HLOT16]. Parallel evaluation
enables us to speed up the computation to log(n) parallel time similarly to the MPS contraction. After
the last MPO layer, we L1 normalize the feature vectors and classify them with an MPS layer.

The proposed deep tensor networks improve the performance with respect to the augmented MPS
baseline on the MNIST dataset, especially in the translational invariant setting where the current single-
model average error rate is 0.75% but with significantly less parameters than the best TI-MPS model.
Further tests and evaluations are in progress.
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Pairwise Classification by Quantum Support Vector
Machines with Kronecker Kernels
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We investigate a possibility to apply quantum computation to pairwise
classification using Kronecker kernels, and propose a way to apply HHL-
based quantum support vector machine algorithm. The pairwise classifica-
tion can predict relationships among data and is used for problems such as
link prediction and chemical interaction prediction. However, in pairwise
classification using the Kronecker kernels, it is very costly to prepare the
Kronecker product of the kernel matrices when the size of the data is large.
We show that the Kronecker product of kernel matrices can be represented
more efficiently in time and space in quantum computation than in classical
computation. We also show that we can effectively train pairwise classifier
by applying the HHI.-based quantum support vector machine algorithm to
the Kronecker kernel matrix. In the comparison experiments between a
classical algorithm and the proposed algorithm on a quantum computing
simulator, the latter achieved almost the same misclassification rate as the
former for the same pairwise classification problem. This indicates that the
proposed algorithm can achieve equivalent accuracy with the classical algo-
rithm more efficiently and scalably. This study paves the way for applying
quantum machine learning to predicting relationships in large-scale data.
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Variational Quantum approach to learn Quantum gates from
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We present a Variational Quantum (VQA) framework to tackle the problem of finding
time-independent dynamics generating target unitary evolutions. Such generators will
typically contain highly non-local interactions, which can be difficult to realize in a given
physical setup. The natural dynamics generating a Toffoli gate involve non-local three-
qubit interactions, which are not easily implemented in experimental architectures. The
method we followed is distinct from techniques such as quantum control and gate
compilation and our approach can be applied in near-term devices also. For the
optimization purpose, we used a very special kind of ansatz known as HVA (Hamiltonian
variational ansatz) which can directly encode the parameters of a given Hamiltonian and
can efficiently bypass the “barren plateaus” phenomenon. But for large circuits, the effect
of “barren plateaus” is still noticeable. In the first step, we need to consider a general
Hamiltonian, with the minimum number of qubit-qubit interactions (e. g. two in the case
of Toffoli), which can generate the same dynamics as the original one. In the second step,
we have to go through some given criteria to minimize the number of parameters or local
terms in the designed Hamiltonian. Lastly, we need to perform optimization using
multiple Trotterization steps such that fidelity between the natural dynamics and actual
unitary remains greater than at least 0.99 to satisfy the threshold for surface code (on
the order of 1%). This work has been previously done by researchers using classical
supervised learning (Obtained fidelity-0.98). We have done it recently using QML and
achieved greater fidelity (0.999).

Keywords: Variational Quantum algorithms, Quantum circuits, Fidelity, HVA

Theory: The natural system dynamics of a quantum system implements the
quantum operation G, with Hermitian generator Hg such that G = exp(—1HG) .
To avoid the highly non-local interactions we can design a subset I' of physical
interactions that can be realized relatively easily and inexpensively. Using
spectral decomposition of G, then we have Hg = —1U log(A)U7. H™ ¢ 1s defined
as the generator that contains physical interactions from the subset I'. In general
H™ ¢ = H™ 6(A), A parametrizes the set of physical interactions. The physical
interactions can be a certain subset of the possible two-body and single-body
interactions, like the set of coupling strengths and local magnetic fields. The
following three conditions are necessary and sufficient to have the correct H™ g
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[ref.1]:

1. H™ g contains only physical interactions,
2. [H~ G» H(}] =0
3. Eigen(H ¢ —Hg)=2nni,ni € Z

Results: Now using the above theory and some big algebra we can train the
quantum circuit to reach a higher fidelity. The below plot shows how the fidelity
increases as we increase the Trotterization steps.

1.00 —#— Natural fidelity

1998
0.98

X 3 4 5 6 7
Trotterization steps

So using a specific circuit and optimizer, after 6 trotterization we can achieve a high
fidelity for 3-qubti toffoli gate and as stated earlier this approach can be extended to
any general multi-control multi-qubit quantum gate.

[/ can give a more detail overview of the work but it would not be possible in the extended abstract.
Thus, | am looking for the poster session and wish to present my work in front of all of you.]
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Abstract

We examined the effect of noise on financial option pricing with the Quantum Monte
Carlo method using noisy simulations. The characteristics of the option payoff result in
plausible price changes with noise strength and noise model type. Systematic analysis of
the deviation from the expected price simultaneously with Quantum Volume estimation for
the corresponding noise strength makes a Quantum Volume roadmap interpretable in terms
of the option pricing error.

1 Introduction

Quantum computing is a fast-developing field with an extensive awaited impact on many fields;
one of them is financial modeling [1]. Therefore predicting the time of practical quantum
advantage is of great interest in many industries. Measures that quantum computer manufac-
turers indicate in their roadmaps are mostly limited to quantum volume, and the number of
qubits [2, 3]. However, interpreting these in terms of error rates for a specific algorithm is not
straightforward.

The quantum version of the Monte Carlo method promises a quadratic speed-up in query
complexity. The estimation error scales with % instead of \/% The quantum Monte Carlo
algorithm applies first the quantum operation A on n + 1 qubits:

A0),,10) = V1 = f(@)v/Pili), [0) + v/ F(@)v/Pili),, [1)

and then uses quantum amplitude estimation [4] to find the probability:
P([1)145) = D f(i)p(i) = E(f)

European call options are financial derivatives that give the holder the right, but no obli-
gation, to buy the underlying asset at a certain point in time (maturity) for an agreed price
(strike). The payoff of a European call option is a piecewise linear function depending on the
strike and the price of the underlying asset at maturity:

flz) =

0 fe<z< K
r— K, ife>K,

where x is the price at maturity, and K is the strike.

If we assume a price distribution for the underlying asset, the option’s expected price can be
calculated by Monte Carlo methods. Taking log-normal probability distribution for the price is
analytically calculable using the Black-Sholes formula making European options an ideal subject
for error analysis.

*zoltan.andras.udvarnoki@ttk.elte.hu
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The reason why quantum computers are not useful yet is noise. There are several noise
models which try to describe the noisy processes. The depolarizing noise model is popular
because of its analytically tractable effects, while the thermal noise with thermal relaxation and
dephasing is a physically motivated noise model.

We developed a method to connect noise models, quantum volume, and calculation error
using noisy quantum simulation through the example of the Quantum Monte Carlo option
pricing algorithm that is of particular interest for the financial industry.

We analyzed noise models with a combination of depolarizing noise and thermal relaxation
and examined the effect of different transverse and longitudinal relaxation times and different
one and two-qubit error rates.

Our work aims to offer a better understanding of the capabilities of NISQ devices and to give
a future outlook of the technology given the announced roadmaps of leading quantum hardware
companies.

2 Methods

We use the Qiskit package of IBM to simulate the behavior of quantum computers. The imple-
mentation of the option pricing algorithm followed [5].

To explain the effects of noise on the algorithm, we analyzed the four main parts of the
algorithm separately: the distribution loading, the comparator, the linear function, and the
amplitude estimation.

Assuming depolarizing noise on the maximum likelihood quantum amplitude estimation
algorithm, a lower error bound can be calculated from the Fischer information matrix [6]. This
analytical expression was used in combination with the error rate of circuit A to approximate
the error of the quantum option pricing algorithm.

To give a reasonable estimate for the near-term applicability of quantum computers for a
specific problem, we also utilize noisy quantum simulations. The quantum volume and error rate
can be calculated simultaneously by simulating a quantum circuit with different noise strengths.
Thus providing an estimate for the necessary quantum volume given some error bound.

3 Results

Our results show that the depolarizing noise model causes the estimated option price to increase.
The reasons are twofold. First, the most costly and noisy part is the distribution loading, where
the effect of noise is the broadening of the distribution. Second, the linear function is rescaled
in a way that makes the analytical option price correspond to a probability less than 0.5. Since
the depolarizing noise drives every probability towards 0.5, the option price increases with the
noise strength.

The effect of thermal noise is basically the opposite, as the |1) states are decaying to |0) the
estimated option price is decreasing similarly.
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Abstract: In an earlier work [1], we introduced dual-Parameterized Quantum Circuit (PQC) GAN, an
advanced prototype of quantum Generative Adversarial Networks (GAN), which consists of a
classical discriminator and two quantum generators that take the form of PQCs. We have shown that
the model can imitate calorimeter outputs in High-Energy Physics (HEP), interpreted as reduced size
pixelated images. However, the simulation was limited to state-vector simulation in the absence of
noise, even though noise due to the interaction with the environment is the major obstacle to
overcome for existing quantum devices.

In this work, we extend the dual-PQC GAN to more practical usage by testing its performance in the
presence of different types of quantum noise, including statistical fluctuations. We start by simulating
noise models only with two-qubit gate errors, which are the most significant for our dual-PQC GAN
architecture. In the simulation, we investigate the impact of the number of measurements and
hyperparameters optimization on the performance of the dual PQC-GAN within a range of errors,
covering a greater range of fidelity values than the real hardware that we will use. The results prove
that we consistently get hyperparameters that reproduce the result close to the target, while more
improvements are required in some areas. The hyperparameter scan also allows us to evaluate the
impact of each factor on the dual-PQC training and gives us some insight as to how to tune them to
improve convergence.
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We then add to the noisy simulation a read-out error, which is tuned to probe the level that can be
tolerated. Finally, we present the results obtained both on superconducting and trapped-ion quantum
hardware with the hyperparameters that are found to be optimal in noisy simulations. The small
standard deviation in the images reproduced by several inference tests on the real hardware with pre-
trained parameters suggests the possibility of successful training, within a reasonable amount of time
where the calibration rate is kept stable. We also propose different ansatz designs, to be efficient on
different hardware architectures we use. Our work ultimately aims to provide a global overview of the
effect of different types of noise in the training of dual-PQC GAN and suggest realistic solutions to
lead the model to convergence.

[1] S. Y. Chang, S. Herbert, S. Vallecorsa, E. F. Combarro, R. Duncan, Dual-Parameterized Quantum
Circuit GAN Model in High Energy Physics, arXiv:2103.15470
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In many applications of machine learning in quantum systems, the system is measured and the measurement
results are analyzed using classical machine learning. However, recently developed quantum machine learning
models, such as variational quantum circuits, can be implemented directly on the state of the quantum system
(quantum data). In this theoretical work, we propose to use variational quantum circuits (VQC) to characterize
the interaction of the quantum system with its surrounding environment. We show that a VQC can classify and
approximate the degree of non-Markovianity of a quantum system dynamics, with high precision, for the case of
phase damping and amplitude damping.
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An essential feature of quantum error correction (QEC) is the measurement of certain
error syndrome operators, which provides information about errors on the physical qubits
without collapsing the logical quantum state. In the canonical approach, quantum error
correction is conducted in a discrete manner, using quantum logic gates to transfer the
qubit information to ancilla qubits and subsequently making projective measurements on
these to extract the error syndromes. However, in contrast to this theoretical idealization
of instantaneous projections of the quantum state, experimental implementation of such
measurements inherently involves performing weak measurements over finite time intervals,
with the dispersive readouts in superconducting qubit architectures constituting the prime
example of this in today’s quantum technologies. This has motivated the development
of continuous quantum error correction (CQEC), where the error syndrome operators are
measured weakly in strength and continuously in time.

Previous theoretical work on CQEC has focused primarily on measurement signals that
behave in an idealized manner, such that each sample is assumed to be i.i.d. Gaussian with
a mean given by one of the syndrome eigenvalues. However, in real signals we observe a wide
variety of “imperfections” caused by hardware limitations and post-processing effects, which
can lead to more complicated syndrome dynamics or significant alterations to the noise
distribution. A well-calibrated CQEC protocol should be designed to take into account any
non-ideal behavior. However it is difficult to generate a precise mathematical description
of the imperfections present in real measurement signals.

We propose a machine learning algorithm for CQEC that is based on the use of a re-
current neural network to identity bit-flip errors. The algorithm is designed to operate on
measurement signals deviating from the ideal behavior in which the mean value corresponds
to a code syndrome value and the measurement has white noise. We analyze continuous
measurements taken from a superconducting architecture using three transmon qubits to
identify three significant practical examples of non-ideal behavior, namely auto-correlation
at temporal short lags, transient syndrome dynamics after each bit-flip, and drift in the
steady-state syndrome values over the course of many experiments. Based on these real-
world imperfections, we generate synthetic measurement signals from which to train the
recurrent neural network, and then test its proficiency when implementing active error cor-
rection, comparing this with a traditional double threshold scheme and a discrete Bayesian
classifier. The results show that our machine learning protocol is able to outperform the
double threshold protocol across all tests, achieving a final state fidelity comparable to the
discrete Bayesian classifier.

* These two authors contributed equally

42



