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QUANTUM STATE DISCRIMINATION FOR MULTICLASS
CLASSIFICATION

ROBERTO GIUNTINI, HECTOR FREYTES, DANIEL K. PARK, CARSTEN
BLANK, FEDERICO HOLIK, KENG LOON CHOW, AND GIUSEPPE SERGIOLI

ABSTRACT. In this talk we focus on the connection between quantum
information theory and machine learning. In particular, we show how
quantum state discrimination can be used as a tool to address the stan-
dard classification problem in machine learning. Previous studies have
shown that the optimal quantum measurement theory developed in the
context of quantum information theory and quantum communication,
can inspire a new binary classification algorithm that can achieve higher
inference accuracy for various datasets. Here we propose a model for
arbitrary multiclass classification inspired by quantum state discrimina-
tion, which is performed by encoding classical data in the space of linear
operators on a Hilbert space. Given that our algorithm is quantum-
inspired, it can be implemented on purely classical hardware, thereby
allowing for immediate applications.

1. LONG ASTRACT

Quantum theory gives place to a new paradigm for information processing
and provides unconventional ways to address computational problems. Ad-
vances in quantum computing have led to the development of algorithms that
utilize the peculiar properties of quantum systems to solve certain problems
dramatically faster than any foreseeable classical hardware [1, 2, 3, 4]. A
commercially relevant family of problems for which the application of quan-
tum algorithms promises certain computational benefits are found in the
domain of machine learning. This gave birth to the new discipline known as
quantum machine learning (QML). Several quantum machine learning algo-
rithms have been proposed with clear quantum advantages [5, 6, 7, 8, 9, 10].
However, the practical application of these algorithms is limited by the de-
velopment of quantum hardware, which remains a long-term prospect.

Advances in quantum computing have led to another intriguing stream
of research which aims to develop new classical algorithms inspired by the
mathematical structure of quantum theory (in particular quantum informa-
tion processing) to outperform existing methods, namely quantum-inspired
classical algorithms [11, 12, 13]. The implications of this approach are signif-
icant, not only in the context of computational complexity theory, but also
in practical applications. The difficulties involved in implementing quan-
tum machine learning algorithms on quantum hardware and the emergence



of quantum-inspired classical algorithms in the NISQ era motivated the de-
velopment of quantum-inspired machine learning (QIML) [14]. In principle,
QIML deals only with “mathematically quantum objects”: objects that are
formally represented by different elements of the quantum formalism (such as
density operators), but are not necessarily connected to actual quantum sys-
tems. Thus, the information stored in those objects can be formally managed
by a classical computer. Recent findings show that the well-developed field
of quantum state discrimination in quantum information theory and quan-
tum communication, can inspire new pattern recognition algorithms that can
improve the binary classification accuracy of extant methods [15, 16, 17, 18].

In this talk, we will first explain the connection between quantum state
discrimination and the problem of quantum-inspired binary classification,
and then propose a quantum-inspired supervised machine learning algo-
rithm for arbitrary multiclass classification. Our algorithm makes use of
the mathematical framework of quantum mechanics to represent data and
a quantum state discrimination technique known as Pretty Good Measure-
ment. We show the theoretical derivation of this measurement strategy
in the context of multiclass classification tasks in machine learning. We
also show how the classification accuracy of this quantum-inspired multi-
class classifier can be improved by increasing the number of copies of the
quantum object that encodes the data — at the cost of increasing the com-
putational time. It is important to stress the fact that, since our approach
does not require quantum hardware, it can be immediately implemented on
existing classical hardware.

In the last part of the talk we show some experiments performed over ar-
tificial datasets, where we compare the quantum-inspired multiclass classi-
fier with other standard classifiers by considering time complexity, accuracy
and other relevant statistical quantities. The results of the experiment show
how the performances of the quantum inspired classifier are quite promising
compared with other standard classifiers. This leads to a double potential
benefit: the first is the improvement of the classification accuracy for certain
datasets and the second is to have the opportunity to run the algorithm over
a real quantum computer with a potential reduction of the complexity.
Part of the results to be presented are summarized in [ar Xiv : 2104.00971v1].
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Abstract

We determine the scaling properties of a neural-network-based quantum state tomography technique and find a
significant reduction in the inference time compared to both maximum likelihood estimation and adaptive neural
network methods. The results indicate that state reconstruction with pre-trained networks is a practical approach
for rapidly characterizing NISQ devices.

Introduction

The reconstruction of a physically valid density matrix from tomographic measurements is a resource-intensive
problem with broad applicability in quantum information science'-?. Recently, several competing methods for state
reconstruction based on machine learning have been proposed and demonstrated® '%. These techniques fall into
two categories, those which are entirely pre-trained and those which adapt based on measurement results'> 4. A
benefit of the former is the ability to front-load expensive computations, offering a potentially dramatic reduction in
inference time as compared to standard reconstruction methods'> 1>,

Here we discuss the scaling properties of both training and inference for a pre-trained machine-learning-based
quantum state reconstruction system. We explicitly limit our system to pure states in an effort to achieve both
the highest possible reconstruction fidelity and the most favorable resource scaling. We find that our networks
reconstruct states of up to four qubits comparably to an MLE process restricted to pure states but with a higher
variance. Based on our results, we estimate that training time increases exponentially with qubit number, but that
inference time remains linear.

Methods

We consider the problem of reconstructing the quantum state of a d qubit system most consistent with a set of a
complete set of repeated tomographic measurements. In particular, we assume the state under investigation has been
measured repeatedly by a set of projectors IT containing the 6¢ eigenvectors associated with the 3¢ combinations of
operators {X,Y,Z} @ {X,Y,Z}, ®...®{X,Y,Z},; where the subscripts indicate qubit number. In the limit of having
infinite copies of the unknown state with which to build measurement statistics, the measurement probabilities
associated with each projector would be given by 7i7; = Tr(pﬁ,-), where ‘Tr’ represents the trace. In practice the
measured probabilities include statistical noise from having finite copies and noise from imperfect experimental
implementations. The problem of inverting measured probabilities to find a physical valid p is known to be a
resource intensive problem':2.

To perform this reconstruction we build a custom-designed convolutional neural network with a convolutional
unit of kernel size (2, 2), strides of 1, ReLU as an activation function, and 25 filters. The filters are followed by a
max-pooling layer with pool-size (2, 2) and a second convolutional unit with the same configuration in a row. We
then connect two dense layers, each followed by a dropout layer with a rate of 0.5, which is finally attached to an
output layer that predicts p. Then, the predicted p are forwarded to an error layer, where mean square loss between
the target and predicted p is evaluated and fed back to optimize the network’s training using the Adagrad optimizer
with a learning rate of 0.005 for up to 300 epochs. We also note that network is constrained to reconstruct physically
valid density matrices through the use of a Cholesky decomposition'®. Additionally, while our system is trained
exclusively on pure states it is not actually constrained to only pure states and can in principle reconstruct mixed
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Figure 1. (a) Neural network reconstruction fidelity for simulation pure quantum states as a function of training epochs. Inset
shows the rank of the reconstructed state for the four-qubit network. (b) Resource scaling for training and inference for the
neural network and inference time for reconstruction of the same states using maximum likelihood estimation. The inset shows
the trainable parameters of the networks used in this demonstration.

states.

We train the network using 35,500 random quantum states according to the Haar measure and the associated 67
tomographic measurement for systems with qubit numbers ranging from one to four. We split the simulated data
into a training set of size 35,000 and a validation set of size 500 to cross-validate the network performance. After
training, we generate test sets that are entirely unknown to the trained network. Note that we keep the depth (number
of hidden layers) of the network fixed for all cases; instead, we increase the number of the neurons in the dense
layers with increasing qubit number. Finally, for comparison purposes, we also implement maximum likelihood
estimation (MLE) with a multinomial likelihood constrained to reconstruct only pure-states.

Results and Discussion

We now consider the scaling properties of our neural network in terms of both training and inference and compare
this with maximum likelihood estimation. In order to evaluate the fidelity (¥) between the density matrix predicted

by our network (p,,) and the target (p;), we use F = ‘Tr /PunPr~/Prn ‘2. In Fig. 1(a), we plot the fidelity F as a
function of training epochs for simulated systems of sizes one through four. We see that after approximately 100
epochs, all four networks have reached maximum fidelity, with the network for a single-qubit requiring fewer than
ten epochs. In the inset, we have included the rank of the reconstructed density matrix for our four-qubit system as a
function of epochs. The size and color of the markers are proportional to the number of states found with a given
fidelity. Despite our network being only constrained to reconstruct physical and not pure density matrices, we see
that the network quickly learns to construct states of low rank.

In Fig. 1(b), we now show the inference and training time as a function of the number of qubits in the system
for both our neural network and maximum likelihood estimation. We see that in terms of inference, the neural
network (red) scales linearly with a four-qubit reconstruction requiring only 0.8ms. Comparatively, the maximum
likelihood estimation for the same states (blue) scales unfavorably with system size and takes orders of magnitude
longer. Of course, the rapid inference times come at the cost of imperfect reconstruction fidelity, as seen in Fig. 1(a),
and an upfront training cost shown by the green line in Fig 1(b). The training time scales exponentially, with the
four-qubit system requiring over four seconds per epoch. Therefore, both maximum likelihood estimation and our
pre-trained neural network method require exponential resources in the size of the system; however, the network has
the advantage that these resources can be expended ahead of time and only once.

We acknowledge the funding under contract/grant numbers W911NF-19-2-0087, W911NF-20-2-0168, and DE-SC0012704. We also
thank the IBM-HBCU Quantum Center at Howard University.
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The adoption of Euclidean quantum field theories in machine learning algorithms makes
inference and learning possible using quantum field dynamics. We demonstrate that the
¢* scalar field theory satisfies the Hammersley-Clifford theorem, therefore recasting it as a
machine learning algorithm within the mathematically rigorous framework of Markov ran-
dom fields. We illustrate the concepts by minimizing an asymmetric distance between the
probability distribution of the ¢* theory and that of target distributions, by quantifying the
overlap of statistical ensembles between probability distributions and through reweighting
to complex-valued actions with longer-range interactions. Neural networks architectures are
additionally derived from the ¢* theory which can be viewed as generalizations of conven-
tional neural networks and applications are presented. Our aims are two-fold: the approach
can provide a new perspective on machine learning with continuous degrees of freedom using
the language of quantum fields, while also providing a new look at quantum fields when

employed as building blocks in neural networks.

This presentation is based on Phys. Rev. D 103 (2021) 074510.
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Abstract

Information-theoretic lower bounds are often encountered in several branches of computer science,
including learning theory and cryptography. In the quantum setting, Holevo’s and Nayak’s bounds give
an estimate of the amount of classical information that can be stored in a quantum state. Here we
combine these information-theoretic tools with a counting argument, establishing the notion of Probably
Approzimately Correct (PAC) Source Coding. We remark that a similar approach was proposed in [1]
in the context of distribution-free quantum PAC learning. Building upon this work, we show two novel
applications in quantum learning theory and delegated quantum computation with a purely classical
client. In particular, we give a lower bound on the sample complexity of a quantum learner for arbitrary
functions under the Zipf’s distribution, and we improve the security guarantees of the delegation protocol
proposed in [2].

Extended Abstract

The term source coding refers to the process of encoding information produced by a given source in a way
that it may be later decoded. The initial result of this topic, the source coding theorem was derived in
the seminal work of Shannon [3], which describes how many bits are required to encode independent and
identically distributed random variables, without loss of information. Nayak’s bound [/] is a generalisation
of the Holevo bound [5] which are fundamental results in the area of quantum source coding, particularly in
the encoding and decoding of classical information encoded into quantum states. Informally, Nayaks bound
states that the probability of successfully decoding an n bit string, encoded into m < n qubits decreases
exponentially in the difference between n and m. In this work, we generalise Nayak’s bound, to not require
that the encoded and decoded bits agree exactly, but only that the decoded bit string is only partially
correct, which we quantify via the Hamming distance between the encoded and decoded bitstrings, X and
Z respectively. We do this via some tools from learning theory, and specifically using the notion of probably
approzimately correct (PAC) learning. As a result, we dub our generalised bound as the PAC Nayak bound,
which can be stated as follows:

Lemma 1 (PAC Nayak’s bound). If X is an n-bit binary string, we send it using m qubits, and decode
it via some mechanism back to an n-bit string Z , then our probability of correct decoding up to an error
en > 0 in Hamming distance is given by

2m
Prldn(X, 2Z) < en] < oo gy

Using this bound, we demonstrate two use cases in two apparently distinct application areas. The first
is a use case in quantum learning theory, in which we prove a lower bound on the sample complexity of
supervised learning algorithms relative to a specific distribution. The second is in the area of delegated
quantum computation, where we use the bound to analyse and refine the security of the protocol of [2]. This
protocol describes a method for a resource-limited ‘client’ to delegate a quantum computation to a powerful
quantum ‘server’ in a manner to provide security guarantees to the data and information of the delegating
client. This scenario is extremely relevant not only for the future quantum-enabled communication, but is
also a practical concern in the modern day, where noisy-intermediate scale quantum (NISQ) [?] computers
are only accessibly via a ‘quantum cloud’ [6]. To begin, we first prove the following lemma, which is a
consequence of Holevo’s bound:
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Lemma 2 (Learning a string with quantum data). Assume X is an n-bit binary string sampled with
probability p, we send it using m copies of a quantum state p € C*¢ and decode it via some mechanism back
to an n-bit string Z. Let dg(X,Z) < en with probability 1 — §. Then,
(=& H(E@)n - HE)
- log ¢

Now, let us discuss briefly quantum learning theory, and how these above results can be useful there. In
PAC learning, one considers a concept class, usually Boolean functions, C C F,, := {f[f : {0,1}"" — {0,1}}.
For a given concept, ¢ € C, the goal of a PAC learner is to output a ‘hypothesis’, h, which is ‘probably
approximately’ correct. In other words, the learner can output a hypothesis which agrees with the output of
chosen function almost always. In order to be a PAC learner for a concept class, the learner must be able to
do this for all ¢ € C. In this process, learners are given access to an oracle, O, which (in one model) outputs
a sample from a distribution, x ~ D, along with the corresponding concept evaluation at that datapoint,
c(x).

Regards quantum PAC learning, one question of key interest is whether quantum learners may be able
to learn concepts with a lower sample complexity than is possible classically. Early results in this direction
were both positive and negative, with the distribution from which the examples are sampled being a crucial
ingredient. For example, it was shown [?] that exponential advantages for PAC learners were possible under
the uniform distribution. On the other hand, if one requires the quantum PAC learner to succeed relative
to all distributions, there is only a marginal improvement that quantum can hope to provide [I]. For our
purposes, we analyse the sample complexity of quantum PAC learners, and use our tools to derive a lower
bound on the learning problem, relative to another specific distribution (not simply the uniform one). The
distribution in question is the Zipf distribution (which is a long-tailed distribution relevant in many practical
scenarios, see [?7, 7, 7] for example) over {0,1}", defined as follows:

1 S
k=1

Taking Lemma 2, and combining it with Lemma 1, we can prove the following lower bound on the sample
complexity of a PAC learner relative to the Zipf distribution.

Theorem 1. For everye € [0,1/3) and § € [0, 1], every (e, 9, Zipf)-PAC quantum learner for F, has sample
complezity Q (N'=¢/n).

Now, moving to the second application; delegated quantum computation. Here we revisit the protocol
of [2], which uses flow ambiguity to allow a client, who has no quantum resources, to delegate a computation
blindly to a (potentially malicious) powerful quantum server. To do so, special properties of measurement-
based quantum computation are utilised to gain security guarantees. By applying Lemma 1 to their protocol,
we can prove the following theorem, which extends the results of [2] from the server being required to guess
the entire computation, to only requiring them to gain knowledge of a part of it. This is important since
in many realistic scenarios, an adversary leaking even part of a computation can be a serious threat to the
client’s privacy.

Theorem 2. Let C be a family of computations, such that each C € C can be encoded in a N-bit string.
Assume that a client delegates C' € C to a server using |0.59N | bits of communication. Then the following
bounds hold:

1. For every e € [0,1], the server can guess C' up to an error eN in Hamming distance with probability
at most 2(-0414e+HEDN - This gives an exponentially small probability for every e < 0.06.
2. Assume that server outputs C' such that dp(C,C") < eN with probability 1. Then ¢ > 0.08.

Here, the family of computations, C, are different possible flows through the MBQC path. The ‘true’
flow is only known to the client, and the hiding of this flow information is what gives the security guarantees.
Given the two diverse applications we have demonstrated here, we believe the bounds we provide in this
work may find applications in other areas of quantum information science.
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Abstract

The problem of private learning has been extensively studied in classical computer science. A striking
equivalence between local differentially private algorithms and statistical query algorithms has been shown
in [1]. In addition, the statistical query model has been recently extended to quantum computation in
[2]. In this work, we give a formal definition of quantum local differential privacy and we extend the
aforementioned result of [1], addressing an open problem posed in [3]. Our approach builds upon the
seminal work of [1], which provided a notion of quantum differential privacy and showed a remarkable
connection with quantum gentle measurements.

Extended Abstract

Differential privacy is a relatively recent field of computer science, that witnessed a tremendous growth over
the last decade [5, 6]. Privacy issues arise in a number of computational tasks, notably in learning problems.
In this context, differentially private mechanisms ensure that the final output does not depend too heavily
on any one input or specific training example. In the standard model, a trusted curator collects the raw
data of the individuals and it’s responsible of their privacy. On the contrary, in the local model the curator
is possibly malicious, and hence each individual submits her own privatized data. More formally, consider
a statistical database, i.e. a vector x = (z1,...,2,) over a domain X, where each entry z; € X represents
information contributed by one individual. Databases x and 2’ are neighbors if z; # } for exactly one
i € [n]. A randomized algorithm A is a-differentially private if for any two neighbor databases x, 2’ and for
every subset F' of the possible outcomes of A we have

Pr[A(z) € F] < exp (o) Pr[A(2)) € F].

We now turn our attention to the local model. Following the notation used in [1], we say that a randomized
algorithm over databases is a-local differentially private if it’s an a-differentially private algorithm that takes
in input a database of size n = 1.

An extension to quantum computation of the former notion is presented in the following sections. More-
over, we provide a precise characterization of quantum local private algorithms In particular, our result
implies that concept class is learnable efficiently by a quantum local algorithm if and only if it is learnable
efficiently in the quantum statistical query model.

Quantum statistical queries. We present here a definition of QSQ oracle that returns an approximation

of the expectation value of any POVM. This definition generalizes the one given in [2], which is stated with
respect to projective measurements. Recall that a POVM measurement M is given by a list of d x d positive
semidefinite matrices E1, ..., Ey, which satisfy ), F; = I. The measurement rule is:

Pr[M(p) returns outcome i| = Tr(E;p)
and hence E[M(p)] = >, iTr(E;p).

Definition 1 (QSQ oracle). A quantum statistical query oracle QSQ,(:,) for some d-dimensional mired
state p receives as inputs a tolerance parameter T > 0 and a POVM measurement M = (Ep,..., Ex_1).
Such oracle outputs a number o satisfying

ja —E[M(p)]| <.
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A QSQ algorithm accesses a quantum state p via the quantum statistical query oracle QSQ,. QSQ
algorithms that prepare all their queries to QSQ, before receiving any answers are called nonadaptive;
otherwise, they are called adaptive.

Let C C {c: {0,1}" — {0,1}} be a concept class and D : {0,1}" — [0, 1] be a distribution. A case of
particular interest is the one in which the state p is a quantum sample associated to a concept class, i.e.

p = [the) (Y|, where |the) =3 1ero1yn vV D (@) |2, ().

Quantum differential privacy. We recall the definition of quantum differential privacy given in [1]. For
the sake of simplicity, we assume that the input state is a product state.

Definition 2 (DP measurement). Two product states p = p1 ® ... p, and 0 = 01 Q- - - ® oy, are neighbors
if there exists exactly one i € {1,...,n} such that p; # o;. A POVM measurement M is a-differentially
private on some subset S of product states if for all states p,o € S that are neighbors and every possible
outcome y of M we have that

Pr[M(p) = y] < exp (a) Pr[M (o) = y].

Definition 3 (Trivial measurement). A measurement M is a-trivial on some subset S if for all states
p,o €S and every possible output y of M we have that

Pr[M(p) = y] < exp (@) Pr[M (o) = y].

We provide here a formal definition of quantum local differential privacy (LDP), inspired by the its
classical countepart introduced in [1].

Definition 4 (QLDP oracle). Let p = p1 ® -+ ® p,, be a product state. An a-quantum local differentially
private (QLDP) oracle QL,(-,-) gets an indexi € {1,...,n} and an a-trivial measurement M = E, ..., Ej.
Such oracle outputs j € [k] with probability Tr(E;p;).

Given a product state p = p; ® ... ® py, we say that an algorithm is a-QLDP if it accesses the state p
via the oracle QL, and the following restriction holds: for all i € {1,...,n}, if QL,(i, M1),...,QL,(i, My)
are the algorithm’s invocations of (L, on state p;, where each M; is an «j-local differentially private

measurement, then Zle a; < a. QLDP algorithms that prepare all their queries to L, before receiving
any answers are called noninteractive; otherwise, they are interactive.

The equivalence

In this section, we relate the QSQ model and the QLDP model. Specifically, we show that a QSQ algorithm
that queries the oracle QSQ, can be simulated by a QLDP algorithm that queries the oracle QL ,eon.
Moreover, the expected query complexity is preserved up to polynomial factors. For the sake of simplicity,
we restrict our analysis to noninteractive QLDP algorithms and nonadaptive QSQ algorithms.

Theorem 1 (Simulation of QSQ algorithms by QLDP algorithms). Let A be a nonadaptive QSQ algorithm
that makes at most t queries to a QSQ oracle QSQ,, each with tolerance at least T, with respect to some
POVMs with at most k outcomes. There exists a noninteractive In (M>—QLDP algorithm that makes

11—«
k2 In(2t/8
n=t—545> (2 2/ )

queries to QL,eon and simulates A correctly with probability at least 1 — 3.

Theorem 2 (Simulation of QLDP algorithms by QSQ algorithms). Let A be a noninteractive e-QLDP
algorithm that makes at most t queries to a QLDP oracle QL jen. There exists a nonadaptive QSQ algorithm
B that makes in expectation at most O(te®) queries to QSQ, with tolerance T := (/(3t) and the statistical
difference between B’s and A’s output distributions is at most (.
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Abstract- Diagnostic Decision Support using Quantum Machine Learning (DDSQML) is an innovative solution used for
detecting the diseases from Chest X-ray images. DDSQML architecture comprises of the quantum convolution layer and
classical convolutional neural network. The DDSQML model has obtained a validation accuracy of 89.13% and a training
accuracy of 98.78%.

I. DIAGNOSTIC DECISION SUPPORT USING QUANTUM MACHINE LEARNING

The recommended Diagnostic Decision Support using Quantum Machine Learning (DDSQML) model aims to enhance the
performance of traditional CNNs classification for x-ray images and predict COVID-19 or other diseases. The central idea
of the DDSQML model is predicated on quantum and classical hybrid computation [1] to enhance the performance of
classical learning [2]. The DDSQML model is split into two parts: first, the quantum part has used the quantum Convolution
layer, presented by Henderson et al. [3]. Second, a traditional convolutional neural network model for the ultimate
classification of the model. The DDSQML model has implemented quantum convolution given by the Maxwell Henderson
et al. [3]. The Quantum convolution operation [7] acts as random quantum circuits (RQCs) to compute the convolution
operation and implement near-term quantum devices. Here circuit has been applied with local regions of input images to
extract significant and informative features. The quantum convolution layer consists of three stages:

e Quantum encoding of the input file

e Arandom quantum circuit as quantum computation step

e Decoding the output of the random circuit (Measurement)

The encoding of the classical data to quantum state could be a hurdle in quantum machine learning (QML) [4]. Various
encoding methods are discussed in [5]. We've used angle encoding to convert pixels’ values of input images into rotation
angles of quantum states. A quantum circuit could be a group of quantum unitary operations and measurements connected
via wires just like the traditional convolutional layer, the quantum convolutional layer composed of quantum kernels applies
to the input image. The central idea of quantum convolution operation is to utilize random quantum circuits to divide input
images into small local regions to extract meaningful features. Measurements are taken from the circuit, and also the
expectation values are decoded into classical bits. Here we are using the Pauli matrices as measurement methods [6]. By
the quantum convolution step, we are able extract more complex features from the low dimension input images (28x28).
After the quantum convolution, the info is fed into the classical convolution neural network(CNN). Convolution operation
can extract feature maps from the input images by using the inner product between the chosen local region of the input
image data and therefore the values of the kernel matrix. In this architecture, every convolution layer is followed by the relu
activation function to feature the activation states within the network. Two Fully Connected Layer (FC) implemented after
the convolution layer within the classical CNN. The FC layers perform the classification task following the flattening layer
by implemented weights to predict classes. The output layer is applied after the fully connected (FC) layer with a softmax
activation function with an adam optimizer with binary cross-entropy loss function.

We experimented with different types of algorithms for the same dataset; we used the SVM classifier as a classical machine

learning algorithm and DenseNet121 architecture as a transfer learning. Training accuracy and validation accuracy are as
follows.
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Algorithm Training Accuracy Validation Accuracy

DenseNet121 99.86% 81.42%
SVM 85.95% 73.12%
DDSQML 98.78% 89.13%
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Abstract:

Detecting topological features in physics with unsupervised machine learning has been
attracting increasing attention recently. It provides a viable approach for the study of
topological phase transitions, without prior knowledge and labeled training examples of
the system.

Here we show with several prototypical and relevant models that topological quantum
phase transitions can be automatically retrieved with unsupervised manifold learning,
requiring only a very limited number of hyperparameters. Inspired by the
fidelity-susceptibility indicator for topological guantum phase transitions as well as the
non-Euclidean structure of the data set, we argue that the widely used choice of a
Euclidean distance can be in general suboptimal to discover topological transitions in
momentum and real space. On the other hand, we can show that The Chebyshev
distance (for momentum space data) and the (dual) L1-norm distance (for real space
data) sharpen the topological quantum transitions, which are better (approximative)
distance metrics supporting the retrieval of the critical points through nonlinear
dimensionality reductions. The pursued method has the potential to deepen our
understanding of topological features in quantum systems, providing fresh perspectives
and possible applications for studying topological quantum phase transitions, especially
when no additional prior information is available.

Reference: Y. Che, C. Gneiting, T. Liu, F. Nori, Phys. Rev. B 102, 134213 (2020).
URL: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.134213
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Abstract: Quantum-classical hybrid algorithms have been shown to greatly
speed up various machine learning tasks. In this work, we implement a novel,
hybrid algorithm for binary classification, the Quantum Discriminator, on a
3x3 bars and stripes dataset and explore means of increasing the algorithm’s
generalizability via a process of Gaussian smoothing.

Keywords: Quantum Learning; Quantum Machine Learning; Binary Classification.

Machine learning models have been widely used for numerous scientific, busi-
ness and consumer applications in the recent past with great success [1]. Presently,
machine learning models are run on classical computing platforms containing CPUs,
GPUs or FPGAs and trained using large amounts of data. However, this will not be
sustainable in the future. In the future, while data available for training is expected
to increase significantly and rapidly, the classical computing platforms are expected
to stagnate in terms of speed and computing power owing to the inevitable end of
Moore’s law [2]. This will severely restrict our ability to build end-to-end machine
learning applications. In order to continue developing machine learning applica-
tions in the post-Moore’s law era, we must resort to non-conventional computing
platforms like quantum computing and neuromorphic computing [3, 4].

Advances in quantum computing have opened up a new frontier in which ex-
isting machine learning techniques can be greatly improved and entirely new algo-
rithms can be developed [5, 6]. In our previous work, we have developed adiabatic
quantum computing approaches for widely used machine learning models such as
linear regression, support vector machine, and k-means clustering [7, 8, 9]. In this
work, we turn our attention to universal quantum computers and propose a novel
quantum machine learning model called the Quantum Discriminator.

The quantum discriminator is a technique designed to perform the task of bi-
nary classification— a problem whereby a model is tasked with sorting data into
two classes (often denoted Class 0 and Class 1). The quantum discriminator is
designed to perform binary classification on binary data in particular. It consists of
a training step, which follows a quantum-classical hybrid algorithm, and an infer-
encing step, which is performed on a universal quantum computer. For a data set
of size N, training the quantum discriminator requires O(N log N) classical bits,
O(log N) quantum bits, and can be done in O(N log N) time. Training yields a
list of O(N) model parameters which are then used to construct the inferencing
circuit, requiring O(log N) quantum bits [10].

The quantum discriminator had yet to be implemented and tested on any real-
world data set; however, it is in theory highly prone to overfitting and can generalize
quite poorly on complex datasets depending the feature extraction process. The
discriminator should inherently perform quite well on the data seen during training,
with the capability to obtain 100% accuracy on a separable training set [10]. Despite
this inherent accuracy, discrepancies between the size of the training set and that
of our binary feature space can lead to poor performance on data reserved for
validation. In particular, the discriminator fails to identify Class 1 data in regions
of our feature space that are not sampled in training; meaning our model should
suffer from poor recall when the size of our feature space greatly exceeds log V.

In this work, we implement the quantum discriminator for the purpose of
benchmarking and propose a technique which, in principle, should improve the
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generalizability issues of our discriminant model. Specifically, we introduce a new
step to the training phase of the discriminator technique whereby we smooth our
extracted model parameters in a Gaussian fashion. During the smoothing process,
we introduce a hyperparameter, o, that controls the standard deviation of our
Gaussian peaks. Both the unaltered and smoothed discriminator algorithms were
benchmarked on a bars and stripes data set, containing 50 bars and 50 stripes in
a 3 by 3 grid. Inferencing was performed both on IBM Q quantum computers and
via noiseless simulation using Qiskit; various performance metrics such as accuracy,
precision, and recall were gathered in each case.

The results of our experiment indicate that the Quantum Discriminator fares
extremely well on conventional, 80/20 train/test splits of our data, obtaining an
average validation accuracy of 99.15% across 300 trials in simulation. A histogram
displaying the distribution of the discriminator’s accuracy on validation in this case
can be found in Fig. 1. Moreover, it was found that the Gaussian smoothing proce-
dure allowed the discriminator to locate Class 1 data in cases where the training data
set does not adequately sample our relevant feature space. For example, in the case
of an 11/89 train/test split, it was found that the discriminator obtained an aver-
age validation accuracy of 71.02% before smoothing, whereas the smoothed models
obtained average validation accuracies nearing 76% with an appropriate choice of
smoothing parameter, 0. A histogram depicting the distribution of model accuracy
for the discriminator without smoothing on an 11/89 split can also be found in Fig.
1, and charts comparing the performance of smoothed and unsmoothed models on
this same split can be found in Fig 2.

Figure 1. Histograms depicting the validation accuracies for unsmoothed models
using a conventional 80/20 split (left) and a sparse, 11/89 split (right):
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Figure 2. Box and whisker plots displaying the distribution of model accuracy,
recall, and F-measure on an 11/89 split for different values of smoothing parameter:
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Classical programming means writing explicit instructions so that a program processes the input data
and correctly answers our guestions. Machine learning (ML) is a branch of artificial intelligence research
that uses implicit programming, where the program does not receive explicit instructions. This method
is particularly suitable for problems that are intuitive to humans but difficult to convert to set of machine
instructions. Some complex problems resist known ML methods, especially in guantum systems [1,3].
E.g. designing new drug molecules or supervising quantum communication networks, which under
certain assumptions should be protected from eavesdropping by the laws of quantum physics. These
tasks quickly become unfeasible as the complexity of the problem increases. Solutions to such problems
must be sought using quantum computing for ML [1,2]. This is the original motivation to combine ML
and quantum physics [1]. However, there are many other reasons to do so. In particular, ML can be used
to motivate theoretical and experimental research in quantum information, quantum state engineering,
classification and detection. In some cases surpassing the best human-designed solutions. To illustrate
this, | will discuss a few assorted examples of combining ML and photonic quantum information
processing, including [2,4-7]. These results include kernel and Hilbert-Schmidt distance based methods,
supervised and unsupervised learning.

Short Abstract

Quantum ML can be used to motivate theoretical and experimental research in quantum information,
guantum state engineering, classification and detection. | will discuss a few assorted examples of
combining ML and photonic quantum information processing, including [2,4-7]. These results include
kernel and Hilbert-Schmidt distance based methods, supervised and unsupervised learning. The also
covey examples where human-designed classification methods for quantum states are surpassed by our
ANNSs.

Keywords

optical quantum information, quantum machine learning, kernel trick, classification, clustering, Hilbert-
Schmidt distance, variational quantum circuits, entanglement detection
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ABSTRACT

We present a novel supervised machine learning method based on preparing quantum states, through
quantum feature maps (QFMs), and on making measurements on those states, corresponding to the
training and prediction phases, respectively [1] . Remarkably, our proposal does not require learning
parameters. The method is implemented on real quantum devices.

Introduction.—In recent years the area of quantum machine learning has been gaining popularity amongst researchers
because of the intrinsic connections between quantum physics and machine learning [2, 3]. There are different ap-
proaches to quantum machine learning depending on whether a classical or quantum system generates the data, and
whether the data processing device is a classical or a quantum computer [4]. Some quantum versions of different
classical machine learning algorithms have been implemented with an emphasis on showing an advantage, at least the-
oretically, of the quantum version in terms of speedup [5, 6, 7]. We focus on another research branch which has been
less explored, where quantum information tools are used to formulate machine learning methods that take advantage
of the quantum conceptual machinery.

Classification tasks have wide academic and industry applications. Several algorithms have been devised to utilise
quantum computers for classification [8, 9, 10]. The task consists of learning a function fg : X — ) that maps a
feature vector x to an estimated class or label g, where § = fo(x) € Y = {1,2,..., K} is one of K possible labels
to classify the feature vector into. The subscript 6, indicates that there is a set of parameters that define a family of
functions — parameterised by 6. The learning process is usually achieved by collecting a dataset D = {(x;, yz)}f\il
where y; € ) are called the true label associated to the feature vector ;. Then, through some algorithm, learning
occurs by minimising an error function, e.g. ming £ = ming Zfi 1 d(fe(xi),yi), where d is some distance function.

This error minimisation strategy has been considered by most of the literature, both in classical and, more recently,
quantum machine learning [11]. However, there are non-optimisation-based strategies that estimate (either explicitly
or implicitly), the joint probability distribution of the data P(D) = P(X,Y’). In this work, we report the implementa-
tion of an optimisation-free classification algorithm on quantum circuits.

The method.—The classification algorithm consists of three basic steps [1]: i) computing a QFM for each data sample

(x — |Yx(x)) and y — [¢y(y)), so that each data sample (x;,y;) is mapped to [¢;) = |[Yx(x:)) @ [Yy(yi)))
in order to build a training dataset state |1y,in) by considering the superposition of all data samples, i.e. |Yirain) =
Yo i) /N>, 1) | i) building the quantum state for a new sample @, to be classified using the QFM, i.e. |¢,) =

24



Optimisation-free Classification with Quantum Circuit Measurements

|x(x4)), iii) projecting the dataset quantum state onto the new sample quantum state, so that the density matrix
corresponding to the ) subsystem— p), = Trx[p'], where p' = 7 [Ytrain)(Vurain| Tx/ T[7s [Yirain {Wtrain| 7], With
T = | )1x] ® Idy— contains the probabilities of classifying the new sample into each label. We highlight that
calculating the training dataset state |ty,in) does not require parameter optimisation and the computational cost is
linear on the size of the training dataset.

The circuit.—We have successfully applied the previous method both to toy data sets [1], as well as more challenging
data sets [12], without the need to build quantum circuits. However, the method can also be realised on qubit-based

1

quantum devices', as we show in this work by implementing it on the IBM Bogotd quantum computer.

Let Uy be the circuit that prepares the dataset state |t,in) With some given QFM. Such dataset state has n, qubits cor-
responding to the X" subsystem, and n,, qubits corresponding to the subsystem?. Thus, U, is a quantum circuit acting
on n; +ny qubits. On the other hand, let U, be the circuit that prepares the state for the sample to be classified, so that
it only acts on the first n,, qubits. Classification is achieved by estimating (07| @ (0™ | Ug(D)UJ () [0™) @ |qy) ’
which is a circuit form normally used to estimate quantum kernels [14]. Thus, the probability of obtaining a label y

b

for the sample x, is computed by setting |gy) to [y (y)).

The circuits are built by first computing the state classically. Then, such a state can be deterministically prepared with
algorithms such as the one presented in Ref. [15]. Note that for QFMs that require many qubits, computing the state
classically can be intractable; thus, such QFMs are not usable with our framework. Nonetheless, we can approximate
any QFM with random Fourier features, as shown in Ref. [12].

Results.—We validated our proposal with a toy XOR data set, which is a set of 4 blobs of points in 2D in a chequerboard
pattern, as shown in fig. 1 (only the test data set is shown). Each coordinate of each sample is mapped to a qubit using
the QFM |y (x1,x2)) = ®?:1(sin 7x; |0) + cosmx; |1)), whereas its corresponding label is mapped to |0) for
red points and |1) for blue points. The background of the panels in fig. 1 shows the probability assigned by the
exactly simulated circuit, the noisy simulated circuit, and the real circuit, from left to right. IBM reports that the
noisy simulation is based on one- and two-qubit gate errors consisting of depolarising and thermal relaxation errors,
as well as individual qubit readout errors. The large discrepancy between simulated and real circuit predictions (see
ROC-AUC metrics in fig. 1 caption) show that a more complete understanding and simulation of noise is needed.
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Figure 1: Predictions (background colour) of exact circuit simulation (left), noisy circuit simulation (middle) and
circuit on the IBM Bogotd quantum device (right) for a XOR data set (points). The area under the the receiver
operating characteristic curve was 99.93%, 99.82% and 95.83% for the predictions of the exact simulation, noisy
simulation, and real quantum device, respectively. The prediction circuit consists of three qubits.

'We have also demonstrated this on simulated qudit-based quantum devices [13].
?Labels are encoded into the n,, qubits, for instance, with a one-hot encoding.
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Abstract

We illustrate and compare alternatives for the quantum nearest neighbor classifier focus-
ing on data preparation and performance. We discuss the differences in the classification
process depending on data encoding, storage, and distance functions. The results show that
the quantum nearest neighbor approach compares well with the classic version.

Extended Abstract

Quantum Machine Learning (QML) summarizes approaches that use synergies between machine
learning and quantum computing (QC) [1-3]. Among different QML approaches, we focus on
those using QC to process classical datasets [4]. More in detail, the dataset under analysis
consists of classical records, such as images or relational data, which are then used as input for
the quantum algorithms. In this setting, it is required a classical-quantum “interface” which
is realized through ad-hoc data transformations procedures. These procedures are designed
according to the task that we want to solve with QML and they can be different depending on
the structure of the quantum circuits of the QML algorithm employed. One of the contributions
of this work is to study and quantify how different data preparation procedures may affect the
performance of QML algorithms.

A central task in QML is to understand whether there are advantages in the quantum counterpart
of classical ML algorithms [5]. Several ML algorithms have been already “translated” in different
ways. Examples are the K-Means clustering algorithm [2], Principle Component Analysis [6],
Support Vector Machine [7], K-Nearest Neighbor [8], Neural Network [9], etc. We focus here
on the Quantum K-Nearest Neighbor (QKNN) algorithm. The theoretical advantage of QKNN
with respect to KNN is that QKNN can calculate the distances between the test instance and the
records in the training set at the same time. In the literature, we can find different versions of
QKNN [8,10-16] implementing different distance functions and requiring different data encoding.
However, it is not simple to compare these results to understand which are the pros and cons of
the different approaches.

We describe the quantum circuits implementing two different versions of QKNN that adopt
different distance functions: Euclidean [10] and Hamming distances [15]. We delineate the
circuits responsible for the calculus of the distances and those responsible for storing the data.
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Since different quantum distance functions require different quantum data storage, encoding,
and pre-processing, we analyze all these aspects in detail by also examining the complexity
of the quantum circuits. In particular, we compare the QKNN based on amplitude encoding
through FF-QRAM [17] and the QKNN based on basis encoding with storage based on the
branching technique described in [18]. In addition to the performance of a quantum classifier,
it is also important to take into account the number of qubits required to implement different
QKNNs. Hence, we empirically experiment the different QKNN methods by varying the number
of training records and the number of features adopted to assess how sensitive the classification
procedures are in terms of accuracy.

Our analysis illustrates the theoretical and empirical differences on various datasets and com-
pares them with a classic KNN algorithm. In particular, we ran experiments on three open-
source datasets: iris, cancer, and mnist. Experiments for QKNN were implemented in Qiskit
and run both on a quantum simulator’ and (when possible) on the quantum computer offered
by IBM Quantum Experience?. The link to the source code will be made available in the full
paper. When possible, we experimented with the complete number of features. However, due
to limited computational resources, sometimes we needed to train the QKNN algorithms on
a preprocessed dataset with a reduced number of features, applying a Principal Component
Analysis (PCA) [19]. For the binary encoding we adopted two different strategies to encode
inputs: Recursive Minimal Entropy Partitioning (RMEP) method [20] and Locality-Sensitive
Hashing (LSH) [21]. The results show that, with appropriate data encoding and training strate-
gies, QKNN is comparable or, in some circumstances, even better than the classic KNN. The
experiments highlight that one of the greater challenges in the usage of QKNN lies in the data
preparation and its encoding.

Several future research directions are possible. First, we would like to study the impact of
running QKNN with different values of the number k of nearest neighbors, in both amplitude
and basis encoding. Second, we want to test QKNN with additional datasets. Finally, we would
like to perform a similar analysis on other QML algorithms such as SVM, or Neural Networks.
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A quantum image edge detector for the NISQ
era

Alexander Geng, Ali Moghiseh, Claudia Redenbach, Katja Schladitz

Abstract—The goal of edge detection is to find ridges in the gray value relief of an image. That is, we are looking for
image locations where the gray value intensity changes suddenly. Edges are among the most important components
to understand and segment an image. Humans detect edges routinely visually. In digital image processing, edge
detection is a standard task, too. In industrial applications, edge detection is used e.g., for extracting the structure of
objects, features, or regions within an image. Thereby, changes in material properties like surface defects can be
detected.

In classical image processing, a standard way to highlight the edges is the application of the image gradient. This
requires the pixel-wise computation of the partial gray value derivatives which is done by convolving the image with
a filter mask weighting a chosen discrete neighborhood. In the filtered image, high gray values indicate a gray value
change in the original, whereas low gray values indicate homogeneous neighborhoods without changes and edges.
Various methods for edge detection have been suggested, for instance the Prewitt, Sobel or Laplace filters or Canny’s
edge detector [1].

In contrast to classical methods, where each pixel must be considered, quantum edge detection algorithms
promise exponential speedup. Exploiting a real quantum computer, we can also benefit from exponentially lower
memory usage in terms of number of qubits compared to the number of bits needed to represent an image in the
classical way. Several approaches for quantum edge detection have been proposed. However, most of them are only
formulated in theory or for a quantum computer simulator [2-6]. For example, in QSobel [6] - a quantum version of
the well-known classical Sobel filter, some steps like the COPY operation or the quantum black box for calculating the
gradients of all pixels can currently not be implemented. To fill these gaps is topic of current research. The Quantum
Hadamard Edge Detection algorithm was suggested as a more efficient alternative [7]. Implementations for a state
vector simulator for an 8 x 8 pixel gray value image and for a 2 x 2 pixel image on a real quantum computer are
provided in the Qiskit textbook [8]. Larger image sizes are however only discussed briefly.

Many quantum algorithms known so far are promising when tested on quantum computer simulators but are
limited by high error rates, small number of qubits, and low coherence times when applied on real quantum
computers. This can lead to outcomes too noisy to be interpretable.

Here, we introduce a method motivated by classical filtering and making use of Tacchino’s quantum machine
learning algorithm [9] and its extension to gray value images [10]. We use a quantum information-based cost
function to compare a binary-valued (black and white) image patch of a test image with a binary filter mask. The cost
function is based on the scalar product of the encoded quantum states of the two images. To stabilize the results, we
average over repeated measurements. We perform this calculation for two filter masks highlighting vertical and
horizontal edges, combine their results, and finally obtain the edges in the test image by a simple threshold.

For testing our approach on IBM’s superconducting quantum computer ‘ilbmq_lagos’, we use the 30 x 30
binary test image shown in Figure 1. The results are clearly interpretable and correct even without applying any error
correction or mitigation techniques to reduce noise. This demonstrates the capabilities of our method in the current
Noisy Intermediate Scale Quantum era.

Our algorithm is not limited to the two filter masks. Like in classical filtering, we can add other filter masks and
combine the results. For example, we can construct that way a diagonal filter which emphasizes diagonal edges more
clearly.

A. Geng is with the Fraunhofer Institute for Industrial Mathematics ITWM, 67663 Kaiserslautern (e-mail: alexander.geng@itwm.fraunhofer.de).
A. Moghiseh is with the Fraunhofer Institute for Industrial Mathematics ITWM, 67663 Kaiserslautern (e-mail: ali.moghiseh@itwm.fraunhofer.de).
C. Redenbach is with the University of Kaiserslautern, 67663 Kaiserslautern (e-mail: redenbach@ mathematik.uni-kl.de).

K. Schladitz is with the Fraunhofer Institute for Industrial Mathematics ITWM, 67663 Kaiserslautern (e-mail: katja.schladitz@itwm.fraunhofer.de).
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Moreover, our algorithm can be easily extended to gray value images, too. We only need to change the input values
for the image and the filter masks, whereas the algorithm itself stays the same. Thus, our method is not limited to
detect edges as other methods like [6, 7]. For example, we can adapt the algorithm to enhance, denoise, or blur the
image.

To summarize, we implement an edge detector for larger images on a real quantum computer. To our knowledge,
this has not been done before. Our algorithmic idea is based on quantum machine learning. The general setting and
variability of our method for solving also other tasks without much additional effortisa clear advantage
over pure edge detection methods.

Keywords— Quantum image processing, quantum edge detection, quantum artificial neurons, IBM Quantum
Experience
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Figure 1: Input image (30 x 30), horizontal and vertical masks (2 x 2), quantum circuit, resulting heat maps for

horizontal and vertical masks with mirroring as edge treatment, combination of the two heat maps, and edge
detected images using a threshold. For the heat maps, IBM’s "gasm_simulator™ and backend ‘ibmq_lagos™ are used.

Short abstract

Edge detection is a routine task in digital image processing. Here, we present a quantum edge detection algorithm
based on a quantum artificial neuron [9] in two orthogonal directions. This machine learning approach can be easily
extended to solve other tasks besides edge detection by adapting the filter masks accordingly.
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Protein folding

Proteins are complex biomolecules, made up of one or several chains of amino acids, and with a large variety of functions
in organisms. To discover its function we need to discover its spatial folding, encoded as a sequence of torsion angles
and difficult to see experimentally.

Structure of the algorithm

The main steps of the proposed algorithm are:

—-

. First, starting from the aminoacid sequence, we use a Deep Learning solution, in this case Minifold [2] in substitution
of AlphaFold [3].

N}

. Then, perform a quantum Metropolis algorithm similar to the proposed in [4] to speedup finding the ground state
of the system.

Quantum Metropolis Algorithm

In the second part of the algorithm we implement a quantum metropolis algorithm to find the state with the least
energy from the guess given by a Deep Learning solution.

Szegedy's quantum walk [1] is defined on a bipartite graph. Given the acceptance probabilities W;; = T};A;;, A;;
defined in (5), for the transition from state i to state j, one defines the unitary

Ui 10) = 13) D v Wiili) = 13) Ip) - 1)
Taking
Ry:=1-2Mj=1-2(1®10)(0]) (2)

the reflection over the state |0) in the second subspace, and S the swap gate that swaps both subspaces, we define the
quantum walk step as

W = U'SURU'SUR,. (3)
The quantum Metropolis algorithm that we employ [4] uses a small modification of the Szegedy quantum walk,
substituting the bipartite graph by a coin. That is, we will have 3 quantum registers: |-) ¢ indicating the current state

of the system, |-),, that indexes the possible moves one may take, and |-) . the coin register. We may also have ancilla
registers |-) ;. The quantum walk step is then

W = RVIB'FBV. (4)

Here V' prepares a superposition over all possible steps one may take in register |-),,, B rotates the coin qubit |-}, to
have amplitude of [1). corresponding to the acceptance probability indicated by

Ajj = min (1,6"’(E”E‘>) R (5)

F changes the |-)¢ register to the new configuration (conditioned on the value of |-),, and |-) = [1).), and R is a

reflection over the state |0) ;4. We will use the following metropolis algorithm
[(L)) = Wy Wi |mo) (6)

where t = 1,..., L also defines an annealing schedule

Figure of merit

A natural metric to use in this context is then the Total Time to Solution (TTS) [4] defined as the average expected
time it would take the procedure to find the solution if we can repeat the procedure in case of failure:

log(1—6)

TTS(t) = tm.

™

Simulation results

Our aim is to study whether using a heuristic quantum Metropolis Algorithm can give a quantum advantage in this
problem compared with its classical counterpart.

classical min(TTS) < quantum min(TTS)

Quantum min(TTs)

g - 0.89
qTTS =6.9 X CTTS! —&— minifold initialization

qTTS =44.3 x CTTS0S3  —e= random iniialzation
o dipeptides

4 uipeptides
Quantum min(TTS) < classical min(TTS) u tetropeptides
+o8 rotaton bits b
10°
u 100 100 10* 10*
Classical min(TTS)
Fit exponents
Schedule Schedule definition Random initialization | Minifold initialization
Fixed Bt =B 0.53 0.89
Logarithmic || 5(t) = 3(1) log(te) = 5(1)log(t) + 5(1) 0.29 0.88
Linear Bt)=p1)t 0.34 0.86
Exponential B(t) = B(1)a~ ! 0.37 1.00
Geometric B(t) = B(1) exp(a(t — HVY) 0.29 0.85

Table 1: Table of scaling exponents for different annealing schedules and ini-
tialization options. For fixed 3, the value heuristically chosen was 3 = 1000,
while the initial 3 value in each of the schedules is 3(1) = 50.

Qiskit experiments

We also run the smallest possible version of our algorithm in IBMQ Casablanca Due to the high level of noise our aim
is to check whether there is a difference in probability in the experiment when we use 3 = ), where all states should be
equiprobable, and higher 3 values, where the probability of the target state is higher. Our experiment aims to see this
difference of probability in practice.
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Binary classification of the MINIST dataset using quantum models
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Abstract We perform binary classification of the MNIST dataset using two models: quantum
k-nearest neighbors, mapping by angles that are into a QRAM, Grover’s algorithm, and the
SWAP-Test; Quantum Neural Network, mapping by amplitude and variational quantum circuits.
Were developed in Qiskit and PennyLane, and a noise model of 5 qubits.

Keywords Quantum Machine Learning, Quantum classification, Quantum software, Quan-
tum Neural Network, Quantum Random Access Memory, Benchmark.

Introduction Classical data must undergo preprocessing to be mapped to qubits. In this
work, we perform classical-to-quantum data processing by angle mapping to the quantum k-
nearest neighbor (quantum k-nn) algorithm and amplitude mapping to a Quantum Neural Net-
work (QNN) [1] [2]. Different work schemes are performed for each model. The quantum k-nn
implementation is based on Grover’s algorithm and QRAM [3] [1], applying the SWAP test to
decide similarity. As for the QNN, the Variational Quantum Circuit (VQC) or ansatz[5] [0] [7] is
used to find from the expected value (Z) of the measurement to obtain the correct class, relying
on a classical ontimizer. Nesterov Momentiim. to nindate the ancoles of onr ansatz.

Quantum Neural Networks
10>
10>
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Data

Quantum k-nn

QrAM
Swap
es

B Variational L
=] T — (0) — [T
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Figure 1: Schemes for generating Quantum k-nn and Quantum Neural Networks.

Swap test |0)
Flag |->

Methods For the quantum k-nn, consider the following mapping method to convert an image
to a qubit representation. Note the equality of the tensor product

Ne...V, =W, (1)
where V1 to V,, are vectors of size 1 x 2 and Wan is a vector of size 2", that contains a vector
state of size p x ¢ = n, where p is the width of the image, ¢ the height of the image, and n
the number of qubits. The QRAM has the feature of accessing multiple memory cells through
an address superposition. Consider the address register a, where a is equal to 2* and k is the
number of qubits. The address superposition is

ij i) — ijma D)y, (2)

where D is the content of the jth memory cell [3]. This structure can be represented as a binary
tree depending on the state |0) or |1) or multiple nodes are selected, with a space complexity
of O(log(n)) [¢]. The QRAM oracle finds the distance between two instances, for instance by
computing the inner product (or dot product) which is defined as |a — b| = |a||b| — a - b, where
la) and |b) are two quantum states. It is necessary to use the SWAP test [2], which can be used
to estimate the fidelity of two pure states, i.e. |(a | b)|?>. The case of the QNN [J] is based on
amplitude mapping. To go from images to a state vector, the following equation is considered
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Vnormalize = L (3)

NNz

where the vector V' has 2" elements. We mapped V,,ormaiize using the method developed by [10)].
The ansatz for each layer in the neural network is composed of Ry and Rz rotations, in such
a configuration as to span all possible coordinates of each qubit. The measured qubit in this
binary classifier is post-selected to equal the |qo) state [11] [12].

. O, W W W R, W W W,
9o e an
R _ oy — Rz
B i as) &
G2 — B — 4 — Rz H
az ae)
RO — L — —
9 an

Figure 2: Ansatz or layer for the QNN.

Results Experiment were performed with two MNIST classes, 3 and 6, for classification; and
resizing from 28 x 28 to 4 X 4 in order to be able to work with 4 qubits per image [13]. The
case of the quantum k-nn has a function from the number of qubits for each training set to
compare with the test set 2/°92™ 4 10, where m is the number of instance. In the same way, it
was realised that the more gates used in 1-nn the lower the performance, where it is shown that
the best performance was with 64 qubits instances and in case of 256 the worst. The case of the
Quantum Neural Networks, the k-fold cross validation method was used, with k = 3; 15 epoch;
two training sets 700 and 7000 with 4,10,20 layers respectively of the same layer and using noise

simulation by the real “ibmq_lima” computer without error mitigation. The Quantum k-nn

Accuracy with 700 train set and 4 layers in VQC Accuracy with 700 train set and 20 layers in VQC Accuracy with 7000 train set and 10 layers in VQC
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Figure 3: There are 3 experiments left, centre and right, from each an mean value was taken for
the three folds, being 78.88%, 89.12% and 91.88%, and is used to obtain the relative error.

model requires numerous qubits —at least 12— in order to have a training set of 2 instances.
This means that operating with more than 2048 instances of data is not reliable, as the task
size is beyond that supported by present-day simulators. QNN works with 4 qubits, and with
large amounts of data in the simulator and a noise model that is equivalent to the computer
ibmq_lima. Showed that 4 layers with 700 images gives 78% accuracy, and an error less of 1%
using 24 CNOTSs gates. Increasing the layers to 20 that means 120 CNOTs, has 50% of accuracy
in the noise model. With 10 layers, being 60 CNOTs and 7,000 images gives 91% of accuracy in
the noise model. Exist a relation between CNOTs gates and the size of the train set. From epoch
6 to epoch 15, we observed that increasing epoch resulted in our model overtraining, lowering
performance by up to 10%. Therefore, our benchmarking found that the best performance was
obtained using VQC, where with this number of CNOTs gates and size of the training set, we
succeeded in the classification task with an average value of 91% accuracy.
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The dilemma of quantum neural networks

Yang Qian Xinbiao Wang Yuxuan Du * Xingyao Wu Dacheng Tao

Abstract

Through systematic numerical experiments, we empirically observe that current QNN fail to provide
any benefit over classical learning models on real-world tasks. First, QNNs suffer from the severely limited
effective model capacity. Second, the trainability of QNN is insensitive to regularization techniques, which
sharply contrasts with the classical scenario. Arxiv

1 Introduction

Driven by the promising empirical achievements of QML and the significance of understanding the power of
QNNs, initial studies have been conducted to explore the trainability and the generalization ability of QNNs
[1,2,3,4,5,6,7] by leveraging varied model complexity measures developed in statistical learning theory [8] and
advanced tools in optimization theory [9]. Notably, the obtained results transmitted both positive and negative
signals. To be more concrete, theoretical evidence validated that QNNs can outperform DNNs for specific
learning tasks, i.e., quantum synthetic data classification [10] and discrete logarithm problem [6]. However, Ref.
[11] revealed the barren plateaus’ issue of QNNs, which challenges the applicability of QNNs on large-scale
problems. Considering that an ambitious aim of QNNs is providing computational advantages over DNNs on
real-world tasks, it is important to answer: ‘Are current QNNs sufficient to solve certain real-world problems
with potential advantages?’ If the response is negative, it is necessary to figure out ‘how is the gap between
ONNs and DNNs?’

Problem setup. We inherit the tradition in DNNs to understand the trainability and generalization of QNNs
[12]. Particularly, the explicit form of the measure of the generalization error bound is

Rs(0) —R(0) == % Zn: C (h(é, x®), y<i>) —Eay (C(h(é, x), y)) ,
=1

where S = {(z®, y®) i, denotes the given training dataset sampled from the domain X x ), h(é, )eH
refers to the hypothesis inferred by QNN with H being the hypothesis space and 6 being the trained parameters,
C:H x (X xY) — RT is the designated loss function, and R () (or R(6)) represents the empirical (or
expected) risk [13]. The generalization error bound in Eqn. (1) concerns when and how minimizing 7@5(9) is
a sensible approach to minimizing R(é) A low error bound suggests that the unearthed rule h(é) from the
dataset S can well generalize to the unseen data sampled from the same domain. Note that since the probability
distribution behind data domain is generally inaccessible, the term R(é) is intractable. A generic strategy
is employing the test dataset S ~ X x ) to estimate this term, i.e., R(0) ~ 1 S°7 | £(h(,27),§) with

(&7),9) € 5.

The trainability concerns the convergence rate of the trained parameters of QNN towards the optimal parameters.
Considering that the loss landscape of QNN is generally non-convex and non-concave, which implies the
computational hardness of seeking optimal 8, an alternative way to examine the trainability of QNN is analyzing
its convergence rate, i.e.,

J(0) =E[|[VeRs(8)]]], (1

where the expectation is taken over the randomness from the sample error and gate noise [4]. In other
words, the metric 7 (@) evaluates how far the trainable parameters of QNN are away from the stationary point
IVeRs(0)|| = 0.

*Corresponding author, duyuxuan123@gmail.com
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2 Results

In this section, we consider three typical quantum neural networks including quantum naive neural network
(QNNN) [10], quantum embedding neural network (QENN) [14], and quantum convolutional neural network
(QCNN) [15], and experimentally compare their generalization ability and trainability with classical neural
networks. i.e., the multi-layer perceptron (MLP) and convolutional neural network (CNN) on a quantum synthetic
dataset and two real-world datasets, i.e., the Wine dataset [16] and MNIST handwritten digit dataset [17]. Note
that models involved in the comparison are designed to own similar number of trainable parameters.

For analysis of generalization ability, randomization experiments are firstly conducted to measure the effective
model capacity, which directly determines models’ generalization. The results reveal that DNNs overwhelm
QNN in fitting random labels, regardless of whether the training data is quantum or classical. Based on this
observation, the generalization errors are evaluated on the datasets with true labels, shown in the left panel of
Fig. 1. It is implicated that the learning performance of current QNNs is no better than DNNs on real-world
datasets and the limited model capacity is further reduced by imperfection of NISQ machines. The right panel
in Fig. 1 describes the effects of typical regularization techniques on the trainability of quantum models. The
results indicate that the widely used regularization techniques in classical deep learning plays a different role in
quantum machine learning. Some regularization strategies such as weight decay fail to enhance the trainability
of QNNs.
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Figure 1: Generalization and trainability of quantum neural networks and classical neural networks. left panel:
generalization performance on quantum data and classical data with true labels. G-Error represents the generalization error.
(a), (b) and (c) show the accuracy of various models changing with training epochs, when training on quantum synthetic
data, the Wine data and MNIST respectively. The bar chart inserted into each figure represents the generalization error of
each model. right panel: effects of regularizations on the trainability of quantum model on Wine dataset. The labels ‘GD’,
‘SGD’, ‘SQNGD’, ‘WD’, and ‘N’ refer to the gradient descent optimizer, stochastic gradient descent optimizer, the stochastic
quantum natural gradient descent optimizer, the weight decay, and execution of experiments on NISQ chips, respectively.
SGD plays a significant role in accelerating convergence and achieving higher accuracy, while others the optimization
process instead of boosting performance.

3 Summary

In this study, we proceed systematic numerical experiments to understand the generalization ability and
trainability of typical QNNs in the view of statistical learning theory. The achieved results exhibited that current
QNN struggle a poor effective model capacity. This observation well explains why current QNNSs can attain
computational advantages on quantum synthetic data classification tasks and discrete logarithm problems, while
they fail to compete with DNNs in tackling real-world learning tasks. Moreover, our study illustrate that the
regularization techniques, which greatly contribute to the success of DNNs, have limited effects towards the
trainability of QNNSs. In addition, our study exhibits that quantum system noise suppresses the learnability
of QNNs, which echoes with the theoretical study [5]. Last, to alleviate the dilemma of current QNNs, we
discuss several prospective directions such as designing over-parameterized QNNs without barren plateaus and
developing effective error mitigation techniques.
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Accelerating variational quantum algorithms with multiple quantum
processors

Yuxuan Du * Yang Qian Dacheng Tao

Abstract

We devise an efficient distributed optimization scheme, called QUDIO, to improve the runtime efficiency
of variational quantum algorithms (VQAs). Numerical simulation demonstrates that QUDIO can surprisingly
achieve a superlinear runtime speedup with respect to the number of local nodes, while theoretical analyses
prove the convergence of QUDIO. Arxiv

1 Introduction

Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain
certain computational advantages over classical methods. Nevertheless, modern VQAs suffer from cumbersome
computational overhead, hampered by the tradition of employing a solitary quantum processor to handle
large-volume data. To conquer the above issues, here we devise an efficient QUantum DIstributed Optimization
scheme (abbreviated as QUDIO). An attractive property of QUDIO is adequately utilizing the accessible quantum
resources to accelerate VQAs, owing to its compatibility. Namely, the deployed quantum processors are allowed
to be any type of quantum hardware such as linear optical, ion-trap, and superconducting quantum chips. Such a
compatibility contributes to apply a wide class of VQAs to manipulate varied large-scale computational problems
and seek potential quantum advantages by unifying quantum powers in a maximum extent. The pseudocode of
QUDIO is presented in Fig. 1

1: Imput: The initialized parameters 8 ONS [0, 27)%@, the employed loss function £, the given dataset/Hamilton,
the hyper-parameters {Q,n, W, T'}

2: The central server partitions the given problem into () parts and allocates them to () local nodes
3: fort=0,---,T—1do
4: for Quantum processor Q;, Vi € [Q] in parallel do
5: S 10
6: forw=0,---,W —1do
7: Compute the estimate gradients gi(t’w)
8: Update gltwtD) — gltw) _ ng(t’w)
: 7 7 7
9: end for
10: end for
11: Synchronize 8(+1) = 5 ZZQ:1 Bl(t’w)
12: end for

13: Output: 6(7)

Figure 1: The Pseudocode of QUDIO. The codes highlighted by the yellow and pink shadows refer to execute them on
the local nodes and the central server, respectively.

*Corresponding author, duyuxuan123 @gmail.com
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2 Results

We carry out numerical simulations to exhibit how QUDIO accelerates QNNs when dealing with a standard
binary classification task with a large size of training examples. As shown in Fig. 2, for both the ideal and NISQ
cases, QUDIO gains the speedup when increasing the number of local nodes ). To be more convincing, we
also perform numerical simulations to validate the effectiveness of QUDIO to accelerate conventional VQE:s, as
shown in Fig. 3.
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Figure 2: Simulation results of QUDIO towards hand-written digits image classification. (a) A visualization of some
training examples sampled from the MNIST dataset. (b) Scaling behavior of QUDIO in clock-time for increasing number
of local nodes @ for varied number of local steps . The labels ‘W = a (I)’ and ‘W = a (N)’ refer that the total number
of local iterations is W = a under the ideal and NISQ scenarios respectively. The hyper-parameters settings for the NISQ
case are p = 107° and K = 100. (c) A box plot that illustrates the achieved test accuracy of QUDIO with varied W and Q
in the NISQ scenario, where the hyper-parameters settings are same with those described in (b).
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Figure 3: Simulation results of QUDIO towards the ground state energy estimation of hydrogen molecule. (a) The
speedup ratio with respect to different number of local nodes () and local iterations W. (b) The potential energy surface
estimated by QUDIO. The black dotted line represents the exact ground state energy. The inner plot compares the error
between the ground truth and the estimated results of QUDIO with the case of 0.3 inter-atomic distance.

3 Summary

In this study, we devise QUDIO to accelerate VQAs with multiple quantum processors. We also provide
theoretical analysis about how the system noise and the number of measurements influence the convergence of
QUDIO. An attractive feature is that in the ideal setting, QUDIO obeys the asymptotic convergence rate with
conventional QNNs, which ensures its runtime speedup with respect to the increased number of local nodes.
The achieved numerical simulation results confirm the effectiveness of our proposal. Particularly, in the NISQ
scenario, QUDIO can achieve superline speedups in the measure of time-to-accuracy.
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During the last decade we have witnessed an impressively fast development of quantum comput-
ing and today’s quantum devices are typically at the so-called Noisy Intermediate-Scale Quantum
(NISQ) [1] stage. NISQ devices suffer from errors due to decoherence, noisy gates and errors in the
read-out measurements. Nevertheless, even at this stage quantum technologies may provide useful
tools for a broad range of applications.

In particular, there has been progress with quantum algorithms designed to address problems
in high energy physics (HEP), see e.g. [2]. Some of these are characterized as Quantum Machine
Learning (QML) applications, based on variational and non-variational approaches.

Motivated by this outlook, we investigate the possibility of using quantum computing for the
generation of Monte Carlo (MC) events through quantum generative adversarial circuits. As such
we are focussing on applications in HEP and the physics being researched at the Large Hadron Col-
lider (LHC) at CERN in Geneva, Switzerland. Here the key goal is to extract physical observables
and to compare them to the corresponding theoretical predictions from the Standard Model (SM)
of particle physics. This comparison step requires complex numerical simulations where millions
of MC events are needed and the computational effort is immense. Quantum generative models
could provide a significant acceleration of MC event generation.

With this in mind, in this contribution we describe practicable variational quantum circuit
models for the generation of MC events in the described HEP context. In detail we investigate
and identify the most suitable ansatz for the parametrization of a quantum generative network and
through simulation on classical hardware we show that our style-qGAN generators are suitable MC
event generators [3].

We propose, implement and test a reconstruction method for evaluating the qGAN model
measurements on current IBM-Q and Ion(Q) quantum devices and find promising results. Further
development of hardware architectures with lower gate-error tolerances, as well as error mitigation
techniques, are still required to obtain more stable results and the presented GAN model should
be considered as a proof-of-concept. Nevertheless, we believe that the approach presented here will
inspire new applications in- and outside of HEP that may benefit from quantum computing.

[1] J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2, 79 (2018).

[2] A. Pérez-Salinas, J. Cruz-Martinez, A. A. Alhajri, and S. Carrazza, Determining the proton content
with a quantum computer, Phys. Rev. D 103, 034027 (2021), arXiv:2011.13934 [hep-ph)].

[3] C. Bravo-Prieto, J. Baglio, M. Ce, A. Francis, D. M. Grabowska, and S. Carrazza, Style-based quantum
generative adversarial networks for Monte Carlo events, (2021), arXiv:2110.06933 [quant-ph].

42



Quantum-inspired heuristic solvers for large-scale linear systems

Oliver Knitter!, James Stokes?, Shravan Veerapaneni®?

Much of the motivation behind quantum algorithm research is due to the proven existence
of quantum algorithms exhibiting exponential speedups over their classical counterparts, includ-
ing algorithms for large-scale linear algebra [5]. Furthermore, plausible complexity-theoretic as-
sumptions strongly suggest [9] that quantum computers are capable of preparing quantum states
whose output probability distributions are hard to sample classically. Despite this promise,
quantum algorithm design suffers from a few caveats.

Firstly, exponential acceleration requires access to fault-tolerant quantum hardware, ne-
cessitating a prohibitively large number of qubits to be effective. Even under the assumption
of polylogarithmic overhead in the asymptotic limit of problem size, the requisite resources
for solving linear systems of practical utility vastly exceeds the near-term capabilities of noisy
intermediate-scale quantum (NISQ) devices. Secondly, the conjectured hardness results [9] for
classical sampling pertain to probability distributions with no known practical utility, absent
any further guidance about which quantum states should be targeted for practical problems.

Overcoming these obstacles has led to a new research direction called variational quantum
algorithms (VQAs), in which the key idea is to encode a computational problem as an opti-
mization problem for an unknown quantum state. More specifically, the probabilistic nature of
quantum states dictates that the solution of the computational problem be somehow encoded
into the output probabilities of the optimal quantum state, which may be estimated through
Monte Carlo sampling. Modeling quantum states classically requires overcoming a curse of di-
mensionality, since the number of dimensions of a multi-qubit state space grows exponentially
with the number of qubits. The potential computational advantage of VQAs stems from their
use of a special purpose Quantum Processing Unit (QPU) to perform state preparation. A
CPU performs gradient-based updates in tandem with the QPU in order to identify the opti-
mal quantum state. Variational algorithms have already been designed with the goal of solving
hard combinatorial optimization [3] and for ground state preparation in quantum chemistry
[7]; more recently, VQAs have emerged for solving practically useful high-dimensional linear
algebra problems, such as matrix-vector products [12], solutions of linear systems [2] and even
singular value decomposition (SVD) [1, 11].

Nonetheless, the existence of a quantum computational advantage—as well as its under-
lying theoretical justification—has yet to be demonstrated for VQAs. To gain insight about
the potential for quantum speedup, we turn to the deep relationship between VQAs and vari-
ational quantum Monte Carlo (VQMC), which in the past few years has undergone signif-
icant progress in expanding its capabilities to problems beyond its traditional purview. In
direct analogy to VQAs, the VQMC overcomes the curse of dimensionality for a restricted
subset of linear algebra problems by performing alternating steps of Monte Carlo sampling
from a parametrized quantum state, followed by gradient-based optimization. However, unlike
VQAs—whose computational advantage hinges on the conjectural difficulty of sampling from
a parametrized quantum circuit— the VQMC gains its power by modeling the quantum state
using multi-layer parametrized neural networks. The key idea underlying the recent success of
VQMC is the exploitation of flexible neural networks as many-body trial wavefunctions, which
has made it possible to leverage the enormous success of machine learning (ML) in solving a

'Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
2Flatiron Institute, Simons Foundation, New York, NY 10010
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variety of high-dimensional learning tasks. An example showcasing the successful fusion of tech-
niques from VQMC and ML was Google DeepMind’s FermiNet [8], whose success relied heavily
on ML notions including equivariant function approximation and natural-gradient optimization.
The close parallels between ideas developed in very different fields has already provided many
opportunities for technology transfer between the fields of VQAs, VQMC and ML, including
the discovery of a VQMC-inspired quantum natural gradient optimization algorithm for VQAs
[10] and an expanding list of VQA-inspired approaches to classical combinatorial optimization
[4, 13, 6].

Although VQMC realizations of linear algebra problems have so far been limited to ground
state preparation and Schrodinger evolution, there is no fundamental obstruction to tackling
other linear algebra problems of technological interest. In order to better understand the
existence and origin of VQA quantum computational advantage, we address the above gap
by pursuing VQMC approaches to linear algebra in exponentially high dimensions. Using a
recently discovered Rayleigh quotient reformulation, we introduce a VQMC-based solver for the
linear system Ax = b, where A is some gigantic row-sparse matrix, which we call the Variational
Neural Linear Solver (VNLS). In addition to providing a toolkit for performing high-dimensional
linear algebra, which is of intrinsic interest, the VNLS provides a quantum-inspired classical
benchmark for assessing the quantum computational advantage of Variational Quantum Linear
Solver (VQLS) [2], which is a proposed VQA for solving sparse high-dimensional linear systems.

By choosing to focus on VQMC, the question of quantum computational advantage can be
isolated from the inherent advantage of Monte Carlo for overcoming the curse of dimensionality.
In addition to further understanding the potential utility of VQAs, the VNLS comprises a new
scalable algorithm for solving high-dimensional linear systems in the short term. Moreover,
it hopefully represents the first example of a new paradigm for efficiently solving a variety
of large-scale linear algebra problems. On a longer timeframe, the insights gained by studying
VQMC realizations of NISQ algorithms on classical hardware will provide the basis for quantum
algorithm technology transfer as quantum hardware matures.
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We present a sampling protocol and a security condition that allows only legitimate learners
to prepare a sample set that guarantees the successful learning. By combining our security
concept with the sample bound in machine learning framework, we derive a sample upper
bound that rule out adversarial learners.

I. INTRODUCTION

The hybridization of machine learning and quantum theory has been intensively studied, espe-
cially to explore the possibility of exploiting quantum learning speedups [1-4]. In parallel, the issue
of security has been of considerable interest to the machine learning community. The term secure
learning is usually used to indicate that the learning is allowed only for the legitimate learner, who
wants to rule out adversarial learners. The main objective of these adversaries is to acquire ability
to become equals of the legitimate learner or to render the learning of the legitimate learner coun-
terproductive. In this context, one of the open issues is how to define a secure learning condition
for detecting and preventing these adversaries. While this problem has been widely studied in
classical learning [5, 6], only a few quantum-mechanical studies have been conducted so far [7-10].

II. MAIN AND RESULTS

In this work, we first design a protocol for secure sampling that runs between two legitimate
learning parties. These legitimate learning parties are consist of a legitimate learner, Alice, who has
learning input (x) and Bob who has an oracle which receives input x and outputs its corresponding
label (¢(x)) to build a set of learning sample {(x, c¢(x))}. The secure sampling protocol provide a
way to detect the existence of an adversarial learner (Eve) who contaminates and/or eavesdrops
the sampling process. Then, we suggest a secure learning condition in the form of learning sample
bound which is motivated by probably approximately correct (PAC) learning framework in machine
learning. Together with the secure learning condition and sampling protocol, it is assure that

*The first two authors contributed equally to this work
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46



e Tp_1

‘Alice Bob
X = o1 - _ )) g .

or r =rgry: - Tn-1

) € {]0),[1)} 4 o—o
orfa) € {[+).1-)} .

PEETETET EEEEEE o

Data oracle
Sampling ~ __ Tomooooooees
(x.c(x)) W
Security
Checking w
[e(r)) = la) OK) === Classical input Qubit state
le(r)) # o) (2) X ) € {[0), 1)}
— Classical channel CAB e r ® |c(x)) € {|0),[1)}
——— Quantum channel QAB @ [a) =le(r)) € {|+),]-)}

FIG. 1: Schematic of our sampling protocol. Alice has facilities for the preparation of inputs, (x, |a) €
{10),]1)}) or (r, |a) € {|+),|—)}). Alice can also perform a single-qubit measurement to identify the
returning qubit. Bob owns the oracle. Here, we consider a classical-quantum hybrid architecture with a
classical input (x or r) and an ancillary qubit state (Ja)). The oracle does not reveal its structure.

the legitimate learner can (1) complete a learning with a targeted performance and (2) prevent
adversarial learner to become a learner with same ability [11].

IIT. REMARKS

We present a concept of secure learning that safeguards against any malicious manipulation of
learning samples. This allows us to establish the link between learning sample complexity and the
condition for machine learning security. Our approach is appealing because the security condition
is defined solely by the size of sample set.

1] P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503 (2014).

S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631 (2014).

M. Schuld, I. Sinayskiy, and F. Petruccione, Phys. Rev. A 94, 022342 (2016).

. Kerenidis and A. Prakash, arXiv:1603.08675

M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, Mach. Learn. 81, 121 (2010).

B. Nelson, B. I. P. Rubinstein, L. Huang, A. D. Josheph, S. J. Lee, S. Rao, and J. D. Tygar, J. Mach.
Learn. Res. 13, 1293 (2012).

J. Bang, S. W. Lee and H. Jeong, Quantum Inf. Proc. 14, 3933 (2015).

Y. B. Sheng and L. Zhou, Sci. Bull. 62 1025 (2017).

N. Wiebe and R. S. S. Kumar, New J. Phys. 20, 123019 (2018).

N. Liu and P. Rebentrost, Phys. Rev. A 97, 042315 (2018).
W
A

IO
—

. Song, Y. Lim, H. Kwon, G. Adesso, M. Wieéniak, M. Pawlowski, J. Kim, and J. Bang, Phys. Rev.
103, 042409 (2021).

47



Quantum diffusion map for nonlinear dimensionality reduction
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Abstract

Diffusion map is a class of dimensionality reduction algorithms inspired by random walks on
networks. We propose a quantum algorithm that takes N classical data points as an input and
constructs the classical diffusion map in expected time N?polylog N compared to O(N?) for the
classical algorithm.

1 Overview of the work

Dimensionality reduction is a class of unsupervised machine learning that offers an automatic identifi-
cation of statistical structures hidden in a high-dimensional dataset. Diffusion map (DM) [1-3] is one
of the nonlinear dimensionality reduction algorithms that exploits the properties of random walkers
to navigate the proximity structures of data points embedded in networks or graphs. This algorithm
has an advantage that the new diffusion coordinate preserves the notion of proximity between data
points [1-3]. DM has been applied to a wide range of unsupervised machine learning tasks from the
identification of quantum phase transitions in many-body systems [4-9] to data visualization in bioin-
formatics [10,11]. DM techniques require the eigen-decomposition of a matrix whose size is N x N,
where N is the number of data points. Therefore, the computational cost grows with the number of
data points as O(N?3) which is prohibitive for a large data sample.

Recently, several quantum algorithms for unsupervised learning have been proposed, such as quan-
tum principal component analysis (qPCA) [12] and quantum spectral clustering [13]. These algorithms
are able to achieve a computational speedup in part due to the assumption of the qRAM data structure
and the use of quantum phase estimation in performing the eigen-decomposition. With a quantum
computational speedup for dimensionality reduction in mind, we propose a quantum algorithm for
unsupervised manifold learning called quantum diffusion map (QDM). Our ¢DM algorithm coherently
prepares all necessary components for constructing DM in time O(polylog N) [14]. The complete al-
gorithm that constructs the classical diffusion map in an end-to-end manner has an expected runtime
of roughly N2polylog N [14], as opposed to O(N?3) in classical DM. The quadratic runtime N? is due
to the final readout using tomography.

The next section provides the detail of classical diffusion map and the last section proposes the
method for constructing quantum diffusion map.

2 Classical diffusion map

In DM, the input dataset defines the all-connected graph such that the data points {:1:(2')} are nodes
and weighted edges {Wj;} of the graph are the Gaussian kernel
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Figure 1: The detailed roadmap for our quantum diffusion map algorithm [14], which also enables an
efficient construction of the transition matrix for generating random walk on graphs as a byproduct.

with the adjustable parameter ¢ to set the scale of data neighborhood. DM then assigns a discrete-time
random walk on the graph given by the normalized weight, called the Markov transition probability
from vertex i to j: Py = Wi/ > i Wi;;. The Markov transition probabilities can be expressed in matrix
form as a product P = D~'K, where the diagonal matrix D contains the degree of each node of the
graph.

The diffusion map of a datum ¥ is defined by the eigen-decomposition of the transition matrix:

¢t,m(w<“) _ ( tor (w@) e AL o, (ajm))T, (2)

where v; is the right eigenvector of P with eigenvalue A;, v; (:l:(j )) denotes the j*™ coordinate of v;, and
the eigenvalues are ordered such that A\g =1 > A1 > Ay > ... > Ay_1 > 0. DM can be constructed
classically in time O(N?) due to eigendecomposition of P, which is prohibitive for large-scale dataset.

3 Quantum diffusion map roadmap

Due to DM’s prohibitive time complexity for large-scale data, we propose a quantum counterpart of
DM called quantum diffusion map (¢qDM) which we summarize below and in Fig. 1.

1. First, with the assumption of gRAM, we construct the kernel matrix as a density matrix in time
O(log N) [15]. In this encoding, each component of the kernel matrix is the inner product of
quantum states that encode the classical data, which we choose to be canonical coherent states
to obtain the Gaussian kernel. Note that this encoding exactly computes the Gaussian kernel
(1) as opposed to that in [16] which approximately computes (more general) nonlinear kernels.

2. The Markov transition matrix is then constructed from the kernel matrix using the quantum
matriz algebra toolbox (QMAT) [17], and quantum matriz inversion [18,19], both of which
require density matriz exponentiation [12] of the kernel matrix and relevant matrices. This
key step allows us to construct the degree matrix of the graph by coherently performing row-
summation of the kernel matrix, which distinguishes our algorithm from other graph-based
quantum algorithms for dimensionality reduction such as [13,16].

3. Finally, the eigen-decomposition of the transition matrix is carried out using gquantum phase
estimation (QPE).

Our algorithm performs the eigen-decomposition of the transition matrix in time O(polylog V) [14],
as opposed to O(N3) for the classical algorithm. This exponential speedup could be beneficial in
achieving a quantum speedup other random walk-based algorithms. To construct the diffusion map
classically, tomography is used to recover the eigenpairs of the transition matrix. The recovery process
is nondeterministic and has an expected runtime of N2 [14], giving the overall expected time complexity
of N?polylog N. 49
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Abstract: Quantum computers are projected to handle the Gibbs sampling and the related
inference on Markov networks effectively. We capture some observations obtained through
extensive simulations with two popular paradigms - QA and QAOA.

1. Brief Description

In this work, we delve into the problem of Gibbs sampling and probabilistic inferencing from simple Markov networks
at different temperatures using the methods of Quantum Annealing (QA) and Quantum Approximate Optimization
Algorithm (QAOA). To sample from a thermal state, we allow the quantum annealer to interact with the environment
and equilibrate. The samples from such a thermal state is expected to follow the Boltzmann distribution given by
P(E;) = g(E;)(¢ 5*")/z where E; represents the energy of the i'” state, g(E;) is the degeneracy of the energy level E;, T
is the effective temperature and Z represents the canonical partition function [1]. To sample from the Markov networks
using QAOA, we employ the approach proposed by Verdon, et al. [2].

From the samples obtained from the above method, it was possible to construct the joint probability distribution
of the variables represented by the nodes of the graph. The frequency of obtaining each sample should match the
probability predicted by the equation above. This was verified by finding the Kullback-Liebler (KL) divergence of
both the distributions, which indeed went to zero as the number of shots was increased. Further, we could marginalize
over some of the variables and find the distribution of the remaining, find the Maximum A Posteriori (MAP) estimation
for one or more variables, and also clamp over some of the variables and check the effect of such clamping over the
other variables [3,4].

2. Results and Discussion
0 O
-1 2 -2 2
e 1 o ° 1 °
(a) (b)

Fig. 1: Simple Markov networks for sampling and inferencing.

Few typical results and remarks from our elaborate simulation studies with different networks and clamping scenar-
ios are recorded in this section. Figure 2a shows the frequency of the sampled states using QA at a low temperature
against their energy, along with the Boltzmann distribution for comaprison. The similarity of the two distributions has
been portrayed in Figure 2b through their KL divergence metric. The results of joint probability distribution, marginal-
ization and MAP estimate are captured in Tables | and 2, respectively, and the marginalized distribution in Figure
3a. One of the nodes of the graph in Figure 1b was clamped to a spin state, and Figure 3b shows the effects of the
clamping on the spin states of the other nodes. Here, it must be mentioned that the samples obtained using QAOA at
low temperatures were markedly different from the Boltzmann distribution, while no such problem was encountered at
higher temperatures; this limitation can be overcome by considering other ways of sampling. Finally, needless to say,
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sampling and probabilistic inference play a vital role in diverse applications. Detailed explanation and more results are
available in [5].
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Fig. 2: (a) shows the results of sampling compared with Boltzmann distributiton, (b) shows the variation of KL diver-
gence between frequency and Boltzmann distribution with temperature.

Table 1: Joint Probability Distribution for Figure 1a  Table 2: Results of marginalization and maximum a poste-
riori estimate over the last variable in Figure la

Configuration Probability Configuration Marginalized distribution ~MAP estimate
-1,-1,-1 0.04410419473467003 -1,-1 0.3699925638273087 1
-1,-1,1 0.3258883690926387 -1,1 0.13000743617269125 1
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Fig. 3: (a) Distribution on marginalizing over graph in Figure 1b, effects of clamping one node on the others in (b).
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Abstract: Various molecular orbital basis sets have been employed to calculate potential energy
surface and bond dissociation energy for Hy, LiH, using VQE. The accuracy improved with larger
basis sets, subject to retaining higher order orbitals in computation.

1. Introduction

Computational Chemistry employs molecular orbital (MO) or a linear combination of atomic orbitals as basis sets,
which comprise a set of algebraic functions to describe the spatial distribution of electronic wave function, as well as
their spin configuration'. Designing of or selecting a molecular orbital basis set is a complex problem, as the
flexibility of the basis set must inherently accommodate all the correlated electronic orbitals and the spatial and spin
representation accurately for computation, yet be computationally efficient?. A larger MO basis set often provides a
more accurate potential energy surface (PES) simulation of a molecule, though with significant increase in
computational resources. As today’s NISQ (Noisy Intermediate Scale Quantum) devices or quantum simulators are
limited by qubit counts and quantum circuit depth, quantum chemistry simulations for small, diatomic molecules
often employ the minimal basis sets of Gaussian orbitals, viz. STO-kG (k = 3, 6, etc.), which approximates each
STO (Slater type Orbital) with k GTOs (Gaussian type Orbital) functions in the least squares. (For e.g., in STO-3G
basis, each STO is represented by a linear combination of three Gaussian functions, often their exponents are
constrained to be the same for all orbitals belonging to the same shell.). Such contracted GTO produce reasonable
computation for an atomic orbital, however, falls on accuracy for molecular computation. More realistic basis sets
with Gaussian functions comprise split-valence basis set with double zeta functions on the valence orbital, some of
which are 3-21G or 6-31G or 6-31G™* (also called the Pople basis set). Here, for X-YZG, X denotes the number of
primitive Gaussians (G) for each core atomic orbital basis function, whereas Y and Z indicate two sets of primitive
Gaussian basis functions (G) for each of the valence orbitals. Although these basis sets may promise higher
accuracy, they require increasing number of qubits. For the post Hartree-Fock wavefunction based calculations,
classically the most widely used basis sets are ‘correlation-consistent’ basis sets, termed as cc-pVNZ, where N = D,
T, Q for double, triple or quadrupole zeta functions, which have even higher computational cost. Recent VQE
computations also considered intrinsic atomic orbital in quantum simulation of molecules in self-consistent field
manner, without incorporating electron correlation in calculation?®,

2. Quantum Simulation approach

We have used quantum simulators to perform Variational quantum eigensolver (VQE) to calculate the potential
energy surface and the bond dissociation energy for small molecules, for a post Hartree-Fock Hamiltonian with the
Born-Oppenheimer (BO) approximation, as a function of various molecular orbital basis sets. The basis sets span
from minimal basis sets of STO-3G, STO-6G, MINAO, to larger split-valence basis sets of 3-21G, 6-31G and 6-
31G*. The experiments are performed on IBM Quantum simulator in a hybrid quantum-classical computing
environment, using L_BFGS_B (Limited-memory BFGS Bound) classical optimizer with maximum iteration counts
as 500. We have used unitary coupled cluster single and double (UCCSD) as the trial state ansatz. Also employed is
the Parity mapping to convert the electronic Hamiltonian to qubit Hamiltonian and have further used Z2 symmetry
operators, to minimize the qubit counts for computation.

3. Results and Discussion
For H2, STO-3G, STO-6G and MINAO MO basis sets have been used, which required four qubits, while eight
qubits were required for simulating using larger MO Pople basis sets viz., 3-21G, 6-31G and 6-31G*. With Parity

mapping and subsequent two qubit reductions, the number of qubits employed for simulation of H, molecule have
been reduced to two and six, respectively. The PES, as displayed in Fig 1(a) and the bond dissociation energy for H;
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molecule in Fig. 1(c) demonstrated higher accuracy for 6-31G* basis set, retaining all higher order orbitals for

computation.
For LiH, the VQE simulation have produced the ground state energy minimum at the same inter-nuclear distance, as

that of the experimental equilibrium inter-nuclear distance of 1.595 angstroms. For the comparison of the VQE
results as a function of various MO basis sets, we have further frozen the core 1s electrons of Li atom and have
removed the 2py and 2py molecular orbitals for Li atom, to reduce the qubit counts for computational efficiency. The
number of active interacting molecular orbitals could be brought down from twelve to six for STO-3G and STO-6G
bases and from twenty to fourteen for 3-21G and 6-31G bases. With Parity mapping and incorporation of Z2-
symmetries, the number of qubits has further been reduced to four and twelve, respectively. The results are plotted
in Figure 1(b), which showed more accurate minimum ground state energy value obtained by using 6-31G basis.
However, the computed bond dissociation energies, which were calculated by subtracting the Ground State energies
of 1.595 angstroms from that of 4 angstroms showed more accurate values for the STO-6G basis set. The results
clearly demonstrated that the removal of the 2py and 2py orbital have reduced the accuracy of the simulated bond
dissociation values. We have further performed simulation using STO-3G and STO-6G bases, without removing 2px
and 2py orbitals (only with freezing the Li core 1s orbitals), which produced more accurate bond dissociation energy
of 0.098 and 0.09935 Hartree respectively, in comparison with the experimental value of 0.0924* Hartree. These
results clearly demonstrate that although larger basis sets like 3-21G, 6-31G or 6-31G* give better accuracy (as seen
in the case of Hy), the results are subject to retaining higher order orbitals in the computation (as seen in LiH), which
in turn require larger qubit counts and circuit depth, limited by computational efficiency of today’s NISQ devices.
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Fig. 1. PES and Bond dissociation energy of H, and LiH, as a function of molecular bases.
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Table -1 : Simulation of Lithium Hydride (LiH)
Basis  Without Removal of 2px and 2py Orbitalllvith Removal of 2p, and 2py orbitaly
No. of qubits Ansatz depth No. of qubits Ansatz depth
STO-3G 6 677 4 360
STO-6G 6 677 4 360
minao® 2 23 23
3-21G 17 8144 12 4206
6-31G 17 8144 12 4206
6-31G* 27, 28258 23 19958
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