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Barren plateaus preclude learning scramblers

Zoë Holmes, Andrew Arrasmith, Bin Yan, Patrick J. Coles, Andreas Albrecht and Andrew T. Sornborger

Scrambling [1–3], the process by which quantum information is rapidly spread through many-body
quantum systems, has proven central not only to understanding quantum chaos but also to the study of
the dynamics of quantum information [4–6], thermalization phenomena [7, 8], the black hole information
paradox [1, 9–11], holography [12, 13], random circuits [14–16], fluctuation relations [17, 18] and entropic
uncertainty relations [19]. However, the complexity of strongly-interacting many-body quantum systems
makes scrambling rather challenging to study analytically. Recently, quantum machine learning (QML)
has emerged as an exciting new paradigm for the study of complex physical processes [20–24]. It is
therefore natural to ask whether QML could be used to study scrambling.

However, despite the high expectations placed on QML, there remain fundamental questions concern-
ing its scalability and breadth of applicability. Of particular concern is the growing body of literature on
the existence of barren plateaus, i.e., regions in parameter space where cost gradients vanish exponentially
as the size of the system studied increases. This phenomenon, which severely limits the trainability of
large scale quantum neural networks, has been demonstrated in a number of proposed architectures and
classes of cost function [27–31].

In this talk we will present a no-go theorem for the use of QML to study quantum scrambling. Namely,
we show that any QML approach used to learn the unitary dynamics implemented by a typical scrambler
will exhibit a barren plateau and thus be untrainable in the absence of further prior knowledge. Crucially,
in contrast to previously established barren plateau phenomena, which are a consequence of the ansatz
structure and parameter initialization strategy, our barren plateaus holds for any choice of ansatz and
any initialization of parameters. Thus, previously proposed strategies for avoiding barren plateaus do
not work here.

More generally, given the close connection between scrambling and randomness, our no-go theorem
also applies to learning random and pseudo-random unitaries. Consequently, our result implies that to
efficiently learn an unknown unitary process using QML, prior information about that process is required.
Thus, our result provides a fundamental limit on the domain of applicability of QML. Detailed analysis
can be found in Ref. [32].

The machine learning task we consider can be illustrated by the famous Hayden-Preskill thought
experiment [1], in which Alice attempts to destroy a secret, encoded in a quantum state, by throwing it
into Nature’s fastest scrambler, a black hole. The question then is: how safe is Alice’s secret? Hayden and
Preskill argued that if Bob knows the unitary dynamics, U , implemented by the black hole, and shares a
maximally entangled state with the black hole, it is possible to decode Alice’s secret by collecting a few
additional photons emitted from the black hole. However, this prompts a second question, how might
Bob learn the scrambling unitary in the first place? Here we investigate whether QML can be used to
learn the scrambling unitary, U .

To address this, we first motivate our notion of a scrambler via the out-of-time-ordered correlator
(OTOC) [3, 13],

fOTOC ≡ 〈X̃Y X̃†Y †〉 . (1)

Here X and Y are local operators on different subsystems, X̃ = U †X(0)U is the Heisenberg evolved
initial operator X(0) and the average is taken over an infinite temperature state ρ ∝ 1. After a time
scale called the scrambling time, the OTOC of a chaotic system tends to a minimal value that is equivalent
to taking its average over a random distribution of unitaries [14]. Since fOTOC in (1) only involves the
second moment of the unitary, its asymptotic smallness can be attributed to the fact that the scrambling
unitary appears to be a typical element of a 2-design [14]. Hence, we can model a scrambler as a unitary
that is drawn from a distribution that forms at least a unitary 2-design [1, 2].

Suppose one wants to use QML to learn an unknown target unitary V where all that is known is
that it is drawn from an ensemble of scramblers V (i.e. a 2-design). The aim of QML is to minimize
a problem-specific cost function that is evaluated on a quantum computer. In the context of learning
unitaries, one considers an ansatz (i.e., parameterized quantum circuit) U(θ) and a target unitary V . To
quantify the quality of the training, one can employ a generic cost function of the form

C(θ, V ) = 〈ψ|W (θ)†HW (θ)|ψ〉 , (2)2



Figure 1. Panel (a) shows the setup of the classic Hayden-Preskill thought experiment. Panel (b) shows the process
of attempting to learn U . Panel (c) shows numerical results for approximate scramblers. A random cut of the
landscape of the LHST cost function [25] CLHST(U, V ) where V (g, t) is a randomly generated 9 qubit scrambler
(n = 9) modelled using the minimal model introduced in [26] and U(g, t) is an ansatz of the same form. Here
ε is a noise parameter that determines the deviation of the ansatz parameters, θ, from the target scrambler’s
parameters, θtarget. The landscape for a weak scrambler with t = 1 and g = 0.1 (g = 5) is plotted in yellow (red).
Stronger scramblers with t = 15 and g = 0.1 (g = 5) are plotted in green (blue).

where |ψ〉 is some state, H is some Hermitian operator and W (θ) = V †U(θ). We consider learning V by
variationally minimizing C(θ, V ).

If the cost function gradient is vanishingly small for all parameters, then the cost landscape forms a bar-
ren plateau. It follows from Chebyshev’s inequality that if the average gradient of the cost 〈∂θkC(θ, V )〉V
vanishes and the variance in the gradient VarV[∂θkC] is vanishingly small for all θk, then the probability
that the cost partial derivative is non-zero is vanishingly small for all parameters. Indeed this behavior is
precisely what we find here. Specifically, our main results consists of the following proposition, theorem
and corollary.

Proposition 1. The average partial derivative of C(θ, V ), with respect to any parameter θk, for an
ensemble of target unitaries V that form a 2-design, is given by

〈∂θkC(θ, V )〉V = 0 . (3)

Theorem 2. The variance of the partial derivative of C(θ, V ), with respect to any parameter θk, for an
ensemble of target unitaries V that form a 2-design, is given by

VarV[∂θkC] =

[
2Tr[H2]

22n − 1
− 2(Tr[H])2

2n(22n − 1)

]
Varχ[−iU∂θkU †], (4)

where VarV denotes the variance over the ensemble V, and Varχ denotes the quantum-mechanical variance
with respect to the ansatz-evolved state |χ(θ)〉 = U(θ) |ψ〉.
Corollary 3. Without loss of generality, the ansatz U(θ) to learn an n-qubit target unitary V can be
written in the form U(θ) =

∏N
i=1 Ui(θi)Wi where {Wi} is a chosen set of fixed unitaries and Ui(θi) =

exp (−iθiGi) with Gi an Hermitian operator. If Tr[H2] ∈ O(2n) and ||G2
k||∞ ∈ O(1), then

VarV[∂θkC] ∈ O(2−n) . (5)

Thus these results establish that for standard costs, and any ansatze and initialization strategy, the
gradient of the cost is unbiased and its variance vanishes exponentially with the size of the scrambler.
Hence for large systems the gradient of the cost is vanishingly small and the landscape forms a barren
plateau as claimed.

Fig. 1c) provides a nice visual representation of how the barrenness of the cost landscape depends on
the degree to which the target unitary is scrambling. In the case of a highly scrambling unitary (blue)
the majority of the landscape forms a barren plateau with only a narrow gorge where the cost dips down
to its minimum. In contrast for weaker scramblers (yellow) the valley around the minimum is wider and
the plateau more featured. 3
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Long-time simulations with high fidelity on quantum hardware

Joe Gibbs, Kaitlin Gili, Zoë Holmes, Benjamin Commeau, Andrew
Arrasmith, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger

We present a new algorithm, called fixed state Variational Fast Forwarding, allowing long-time
high fidelity simulations of quantum systems on NISQ devices with short coherence times. We
execute it successfully on quantum hardware and in large numerical implementations, and analyse
the noise resilience and scaling of simulation errors.

Motivation Relative to classical computers, quantum computers have the potential to provide exponential speed
ups for simulating quantum systems. Such quantum simulations could lead to advances across a wide range of
industries including pharmaceutical development and materials design. However, while quantum computers are rapidly
reaching the stage where they can deliver an advantage over classical devices, we remain in the noisy intermediate-
scale quantum (NISQ) era in which the length of time that may be simulated is limited by hardware noise. Here we
demonstrate that, despite these limitations, it is possible to implement long-time, high fidelity simulations on current
hardware.

Background Our simulations are performed using a new algorithm that we call the fixed state Variational Fast
Forwarding (fsVFF) algorithm [1]. We present a significant reduction in resource requirements over the recently
proposed Variational Fast Forwarding (VFF) algorithm [2]. VFF allows long time simulations to be performed using
a fixed depth circuit, thus enabling a quantum simulation to be ‘fast forwarded’ beyond the coherence time of noisy
hardware. The VFF algorithm requires finding a full diagonalization of the short time evolution operator U of the
system of interest. Once found, the diagonalization enables any initial state of that system to be fast forwarded.
However, for practical purposes, one is often interested in studying the evolution of a particular fixed initial state of
interest. In that case a full diagonalization of U is overkill, and it suffices to find a diagonalization on the subspace
spanned by the initial state, rather than on the total Hilbert space. This approach is tailored to making dynamical
simulation more suitable for NISQ hardware in two key ways. First, the cost function requires half as many qubits as
VFF. This not only allows larger scale simulations to be performed on current resource-limited hardware, but also has
the potential to enable higher fidelity simulations since larger devices tend to be noisier. Second, fsVFF can utilize
simpler ansätze than VFF both in terms of the depth of the ansatz and the number of parameters that need to be
learnt. Thus, fsVFF can reduce the width, depth, and total number of circuits required to fast forward quantum
simulations, hence increasing the viability of performing simulations on near-term hardware.

FIG. 1: Schematic (a) Trotterization-based
quantum simulation running past the coherence

time of the quantum hardware. (b) A variationally
fast forwarded quantum simulation. The

approximate diagonalization is used to simulate
Hamiltonian evolution with a fixed depth circuit.
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FIG. 3: The fsVFF Algorithm

Results We demonstrate these advantages by implementing long-time high fidelity quantum simulations of the
2-qubit XY spin chain on Rigetti’s and IBM’s quantum computers. Specifically, while the iterated Trotter approach
has a fidelity of less than 0.9 after 4 time steps and has completely thermalized by 25 time steps, with fsVFF we
achieve a simulation fidelity greater than 0.9 for over 600 time steps, as shown in Fig. 2. We further support the
effectiveness of this approach for NISQ simulations, utilizing adaptive ansätze whose discrete structure evolves during
training to perform 4 qubit noisy and 8 qubit noiseless numerical simulations of the XY model and Fermi-Hubbard
model respectively. A method inspired by stochastic gradient descent of classical neural networks is developed to
remove the dependence on the dimension of the subspace spanned from the number of circuits required per cost
function evaluation.

The fsVFF Algorithm The fixed state Variational Fast Forwarding algorithm (fsVFF) is summarized in Fig. 3.
We start with an initial state |ψ0〉 that we wish to evolve under the Hamiltonian H.

1. Approximate the short time evolution using a single step Trotter approximation U .

2. Variationally search for a diagonalization V = W (θ)D(γ,∆t)W (θ)†, D is a diagonal matrix, of U over the energy
subspace spanned by |ψ0〉, using the cost function,

CfsVFF := 1− 1

neig

neig∑

k=1

| 〈ψ0| (V †)kUk |ψ0〉 |2 . (1)

Here neig is the number of energy eigenstates of the Hamiltonian H spanned by the initial state, which can be
calculated using an algorithm we provide. At each iteration step the gradient of the cost function is measured
on the quantum computer, which is used to update the parameters using a classical optimizer. The output of
the optimization loop is the set of parameters {θopt,γopt} that minimize CfsVFF.

3. Finally, the state |ψ0〉 can be simulated for time T = N∆t using the circuit

W (θopt)D(γopt, N∆t)W (θopt)
† . (2)

That is, by simply multiplying the parameters γopt in the diagonalized unitary by the number of iterations N .

Noise Resilience and Energy Estimation In our analytical results, we prove the faithfulness of the fsVFF
cost function by utilizing the newly developed No-Free-Lunch theorems for quantum machine learning [3, 4]. We also
provide a proof of the noise resilience of the fsVFF cost function, specifically the optimal parameter resilience [5].
Finally, we perform an analysis of simulation errors under fast-forwarding. The diagonalizations obtained using fsVFF
may further be useful for determining the eigenstates and eigenvalues of the Hamiltonian on the subspace spanned by
the initial state. This can be done using a time series analysis, by using fsVFF to reduce the depth of the quantum
phase estimation (QPE) algorithm, or using a simple sampling method. We demonstrate on IBM’s quantum computer
that, while standard QPE fails on real hardware, fsVFF can be used to obtain accurate estimates of the spectrum.
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Eigenstate extraction with neural-network tomography
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Abstract

We implement quantum state tomography through the iterative reconstruc-
tion of the eigenstates of the experimentally produced mixed states. Our
method leverages machine learning through neural-network representations
of pure quantum states, which efficiently scale to large quantum systems.
We verify our method with experimental data from trapped ion experiments.

Keywords: quantum state reconstruction, neural-network quantum state
representation, restricted Boltzmann machines

In times where quantum experiments and quantum devices have reached
unprecedented size and complexity, their verification has become increas-
ingly hard and yet indispensable. Noise and imperfections cause deviations
of the produced states from the target states, which may, in many cases, put
their intended purpose in jeopardy. Quantum state tomography is the pro-
cess of reconstructing the mixed states produced in quantum experiments
or devices from their measurement data. Based on statistical analysis of
a near-complete set of this measurement data, the realized states can, in
principle, be fully reconstructed with high accuracy [1, 2, 3, 4].

However, full, unconditional quantum state tomography becomes pro-
hibitively expensive with increasing Hilbert space dimension, both from an
experimental perspective (the required number of measurements scales ex-
ponentially with the system size) and from the perspective of data post-
processing. While machine learning has the potential to significantly miti-
gate these issues, full fledged mixed-state tomography using machine learn-
ing has remained challenging, due to the intrinsic constraints to be met by
physical quantum states.

In this contribution, we propose an algorithm for the stepwise reconstruc-
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tion of mixed quantum states in terms of their eigenvalues and eigenstates.
Our scheme thus exploits that highly efficient, machine learning-based meth-
ods for pure-state tomography can also be used to robustly recover the
eigenstates of mixed states. Tailored iteration then allows one to recover
the eigenvalues and eigenstates of mixed states up to a desired rank. Such
reconstruction of mixed states delivers valuable structural information about
the state produced, and comes with substantially reduced costs.

To demonstrate our reconstruction scheme, we specifically use and adjust
a recently developed method for pure-state tomography based on neural-
network representations of quantum states [5]. Indeed, these Neural Quan-
tum States, which have restricted Boltzmann machines at their core (see
Fig. 1), have been shown [5] to be viable for tomography of complex, high-
dimensional pure states, leveraging both the efficient and scalable represen-
tation of neural networks and their great expressional power. We can show
that [6], using our iterative reconstruction scheme, these benefits carry over
to the eigenstate retrieval of mixed states, and hence to full-fledged mixed-
state tomography.

Figure 1: Schematic depiction of a restricted Boltzmann machine. Every node i in
the visible layer (blue circles) is connected via a weight Wij with every node j in the
hidden layer (red circles). There are no intra-layer connections. In addition, all nodes are
connected to bias nodes (not depicted). In our application, restricted Boltzmann machines
are used to represent the amplitudes and phases of pure quantum states. Gibbs sampling
can then be used to efficiently evaluate the quantum states.
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Classical variational simulation
of the Quantum Approximate Optimization Algorithm
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We introduce a method to simulate parametrized quantum circuits, an architecture behind
many practical algorithms on near-term hardware, focusing on the Quantum Approximate
Optimization Algorithm (QAOA). The algorithm can reach unexplored parameter values
without requiring large-scale computational resources. Our approach can be used benchmark
the next generation of quantum experiments.[1]

I. Introduction

The past decade has seen a fast development of quantum technologies and the achievement of an
unprecedented level of control in quantum hardware [2], clearing the way for demonstrations of
quantum computing applications for practical uses. However, near-term applications face hardware
limitations (dubbed Noisy Intermediate-Scale Quantum-NISQ computers [3]) where qubit count
and lack of quantum error correction constrain potential applications. Despite these limitations,
hybrid classical-quantum algorithms [4–7] have been identified as candidates for practical quantum
advantage [8–11]. The Quantum Approximate Optimization Algorithm (QAOA) [6] is a notable
example of variational quantum algorithm with prospects of quantum speedup on NISQ devices.
Built to exploit quantum effects to solve combinatorial optimization problems, it has been ex-
tensively theoretically [12–17] and experimentally [18] studied on state-of-the-art hardware and
proposed as a hardware benchmark [19–22]. In this work [1], we use a (neural network) variational
parametrization [23] of the many-qubit state and extend the method of Ref. [24] to simulate QAOA.
This approach trades the need for expensive exact classical simulation with an approximate and
accurate description. We successfully simulate the Max-Cut QAOA circuit on a 3-regular 54-qubit
graph [6, 12, 18] at depth p = 4.

Exact Approx. Exact Approx. Exact Approx.
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FIG. 1. The QAOA quantum circuit. A schematic representation of the QAOA circuit and our
simulation. The input state is trivially initialized to |+〉 =∑B |B〉. Next, at each p, the exchange of exactly
(UC(γ) = e−iγC) and approximately (RX(β) = e−iβX) applicable gates is labeled. (Here, C is the QAOA
cost operator associated with the underlying graph.)
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(a) (b)

FIG. 2. Simulating 54 qubits. a: Randomly generated 3-regular graphs with 54 nodes are considered
at p = 1, 2, 4. At each p, all angles were fixed except for the final γp. Cost dependence along a slice of the
variational landscape is investigated. The dashed line represents the exact cost at p = 1 (see Refs. [1, 12]).
b: Stochastic estimations of single-qubit fidelities (see Ref. [1]) in the course of optimizer progress, within
a 54-qubit system at depth p = 2, are shown. All QAOA parameters except γ2 are kept fixed.

II. Results
We use a neural-network representation of the many-body wavefunction ψθ(B) associated with the
computational basis of classical bit strings |B〉. A shallow network of the Restricted Boltzmann
Machine (RBM) type is used [23, 25–27]. The advantage of using the RBM ansatz is that some
one- and two-qubit gates can be applied exactly by simple analytical parameter replacements. For
all other gates, we use stochastic maximization of the quantum fidelity between ψθ(B) and different
target states to approximate all other gates [24, 28–30].

We can simulate QAOA by combining these two strategies (see Fig. 1). We focus on Max-Cut
QAOA for 3-regular graphs [6, 13]. Details about the ansatz, optimization scheme and analytical
gate implementations can be found in the full paper in Ref. [1]. Our approach can approximately
simulate system sizes that are not easily reached by exact classical simulation. In Fig. 2 we show the
case of N = 54 qubits. We closely reproduce the exact error curve using the variational optimization
method. We also perform simulations at p = 2 and p = 4 and obtain corresponding approximate
QAOA cost function values.

At p = 4, we exactly implement 324 RZZ gates and approximately implement 216 RX gates.
The accuracy of our approach can be quantified using intermediate variational fidelity estimates
despite the lack of exact results for systems of this size. In Fig. 2 (panel b) we show the optimal
variational fidelities found when approximating the action of RX(β) = e−iβX gates (where X is the
Pauli X gate) on the RBM wavefunction. At optimal QAOA angles, the lowest variational fidelity
reached was above 98%, for a typical random graph instance shown at Fig. 2. However, for QAOA
angles away from the variational optimum, we find lower fidelity estimates of the RBM variational
wavefunction.

III. Conclusion
Using a novel approximate variational method, we successfully explore previously unreachable re-
gions in the QAOA parameter space. The method is introduced as complementary to established
numerical methods of classical simulation of quantum circuits because it is constrained by choices
QAOA angles more than qubit counts or circuit depths. Classical variational simulations of quantum
algorithms provide a natural way to both benchmark and understand the limitations of near-future
quantum hardware. On the algorithmic side, our approach can help answer an open question in
the field - whether QAOA can outperform classical optimization algorithms [31–33].
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We complement recent developments of theoretical performance guarantees for learning models based on
parametrized quantum circuits (PQCs). Namely, we prove the first generalization bounds that explicitly take the
encoding of the classical input into account. These bounds allow the selection of suitable PQC-based learning
models through structural risk minimization.

1. INTRODUCTION AND MOTIVATION

Recent years have witnessed a surge of interest in using quantum computers for machine learning [5, 13]. Given the limitations
of noisy intermediate-scale quantum (NISQ) devices, most approaches to near-term quantum-enhanced machine learning employ
hybrid quantum-classical algorithms [4]. Of particular prominence are variational quantum algorithms in which a parametrized
quantum circuit (PQC), schematically depicted in Fig. 1, defines a machine learning model which is then updated via a classical
optimizer [3, 11, 18]. The flexibility in design choices for PQCs is often only perceived in terms of the structure and layout of the
trainable gates [17, 24]. In comparison, the data-encoding strategy, crucial when using a PQC for machine learning with classical
data, has received little attention. Despite this, it has recently been shown that the data-encoding strategy is directly related to
the expressive power of PQC-based models [14, 20, 22, 23]. In this work, we further the study of data-encoding strategies for
PQC-based supervised learning models by investigating the effect of data-encoding strategies on generalization performance.

More specifically, we consider the following fundamental question: Given a PQC-based model, trained on a specific data
set, can we place any guarantees on its expected performance on unseen data, the out-of-sample performance? This question is
motivated by the key insight that one should not choose the model or architecture which performs best on the available training
data, but rather the model for which one expects the best out-of-sample performance. Typically, one refers to the difference
between the accuracy of a model on a given training set and its expected out-of-sample accuracy as the generalization gap. We
call a (probabilistic) upper bound on this generalization gap a generalization bound. These bounds are a central object of study
in statistical learning theory [6, 19, 21].

2. RESULTS AND METHODS

The two main results of this work are as follows: First, we provide an explicitly encoding-dependent generalization bound for
any PQC-based machine learning model. This implies rigorous out-of-sample performance guarantees, given the performance
on the training data. Second, we showcase the generalization guarantee implied by our bound for different commonly used
data-encoding strategies. This demonstrates how our bounds can be used to guide the choice of data-encoding.

Our general proof strategy is as follows: We bound complexity measures of the class of functions that a PQC-based machine
learning model can implement. These complexity bounds then imply generalization bounds. As a first step in our proofs, we
represent functions implemented by PQC-based models in terms of generalized trigonometric polynomials (GTPs) [23]. The

Figure 1. PQC with gates parametrized either by the data x (data-encoding gates), or the trainable parameters θ (trainable gates).
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latter have the same general form as standard trigonometric polynomials, but we allow for real-valued frequencies. Crucially,
the data-encoding and the trainable part of the PQC dissociate in that representation: The admissible frequencies in the GTP
depend only on the data-encoding, the coefficients in the GTP depend only on the trainable gates and the measurement in the
PQC. Therefore, we can study the effect of the data-encoding on the complexity of PQC-based machine learning models via
complexity bounds for GTPs in terms of the admissible frequencies. We give two proof strategies for achieving the latter, one
based on known empirical Rademacher complexity bounds for classical neural networks, the other based on covering numbers.

Combining the connection between PQCs and GTPs with our generalization bounds for GTPs leads to our first main result,
explicitly encoding-dependent generalization bounds for PQC-based machine learning. Thereby, we have reduced the problem
of obtaining generalization guarantees for PQCs to that of bounding the number of admissible frequencies in GTP corresponding
to the PQC. In our paper, we explicitly describe how to derive these frequency sets from the spectra of the data-encoding
Hamiltonians, which is a purely combinatorial problem. We analyze different families of data-encodings that are commonly
used in quantum machine learning. For several such strategies, we show a favourable (polynomial) worst-case scaling of the
generalization error in terms of the overall number of data-encoding gates used in the PQC. However, we also demonstrate that
other strategies lead to an unfavourable (exponential) scaling. This underlines the importance of the choice of encoding.

3. IMPACT

There has recently been a stream of works deriving generalization bounds for PQC-based models [1, 2, 7–10, 12, 15, 16].
However, our guarantees are the first for general PQC-based models incorporating data re-uploading [20], in which trainable
circuit blocks are interleaved with data-encoding circuit blocks. Moreover, many prior works derived generalization bounds
which depend only on properties of the trainable part of the PQC. They are thus unable to offer insight into the effect of the data-
encoding on generalization. Some prior works do indeed derive generalization bounds with an encoding-dependence. However,
in all the works so far, this dependence has been implicit, the dependence on the data-encoding strategy was not a priori clear. In
this case, one cannot straightforwardly use such bounds to determine what effect a change in the data-encoding strategy will have
on the generalization performance of the associated PQC-based model. Our generalization bounds for PQC-based models are
explicitly encoding-dependent: They depend explicitly on natural hyper-parameters of the data-encoding strategy. As such, we
provide a clear understanding of the effect that changes to the data-encoding strategy will have on generalization performance.

Our generalization bounds can be used complementarily to prior work. We illustrate this complementarity by suggesting
“multi-dimensional structural risk minimization.” Basic structural risk minimization (SRM) assumes that the model class has
a tunable complexity parameter and a corresponding generalization bound. Increasing this complexity will typically allow for
a smaller training error, but at the cost of larger generalization error. Therefore, as illustrated in Fig. 2, SRM balances these
two phenomena to identify an optimal complexity parameter. Our suggestion of multi-dimensional SRM for quantum machine
learning is the following: We can naturally consider two sources of complexity for PQC-based models, the trainable part and
the data-encoding. Prior work has made progress on understanding the effect of the former on generalization, our work provides
new insight into the latter. Thus, combining our encoding-dependent results with prior work leads to a rigorous foundation for
architectural design choices for PQCs in machine learning that takes both of the natural sources of complexity into account.

Figure 2. Illustration of SRM [19].

Variational QML based on PQCs is a promising area of application for NISQ devices. However, a theoretical understanding
of the prospects of variational QML is only just developing. Our work is the first to explicitly show that the choice of classical-
to-quantum data-encoding for PQCs is crucial to the generalization capabilities of the corresponding QML model. Thereby, we
enrich theoretical research in QML by a novel perspective on generalization. As we demonstrate with our proposal of multi-
dimensional SRM, this paves the way for more advanced studies of generalization in QML, where the complementary aspects of
trainable part and data-encoding are combined. Finally, based on our theory, we also propose numerical experiments, which we
envision to further illuminate the expressivity of PQCs, in particular compared to classical machine learning models.
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Modern quantum machine learning (QML) involves optimizing a parameterized quantum circuit
on training data, and subsequently makes predictions on testing data. We comprehensively study
the generalization performance in QML after training on few data. We support our theory by
numerical experiments for quantum phase recognition and unitary compiling.

I. Background and Motivation

The ultimate goal of machine learning (ML) is to make accurate predictions on unseen data. This is known as
generalization, and significant effort has been expended to understand the generalization capabilities of classical ML
models. For example, theoretical results have been formulated as upper bounds on the generalization error as a
function of the training data size and the model complexity. Such bounds provide guidance as to how much training
data is required and/or sufficient to achieve accurate generalization.

Quantum machine learning (QML) is an emerging field that has generated great excitement [1–4]. Modern QML
involves training a parameterized quantum circuit in order to analyze either classical or quantum data sets [5–9].
Early results indicate that QML models (QMLMs) may offer some advantage over classical models under certain cir-
cumstances for classical data analysis [10, 11]. It has also been proven that QMLMs provide an exponential advantage
in analyzing quantum data [12, 13]. However, little is known about the conditions needed for QMLMs to accurately
generalize from training data to previously unseen data. Significant progress has been made in understanding the
trainability of QMLMs [11, 14–26], but trainability is a separate question from generalization [11, 27, 28]. Overfitting
of training data could be an issue for QML, just as it is for classical machine learning. We provide a comprehensive
study for the generalization performance in QML, and thereby show how QML can avoid overfitting.

II. Results and Methods

We prove bounds on the generalization error in variational QML: The difference between the true performance and
the training performance is approximately upper bounded by

√
T/N , with T the number of trainable gates and N

the training data size. Importantly, this implies that an efficiently implementable QMLM, with T ∈ O(poly n), only
requires an efficient amount of training data, N ∈ O(poly n), to obtain good generalization. Here, n is the number of
qubits. This implication, by itself, will improve the efficiency guarantees of variational quantum algorithms [5, 29, 30]
that employ training data, such as quantum autoencoders [8], quantum generative adversarial networks [31], variational
quantum error correction [32, 33], variational quantum compiling [34, 35], and variational dynamical simulation [36–
39]. It also yields improved guarantees for classical algorithms that simulate QMLMs. We furthermore refine our
bounds to account for gate-sharing, variable circuit architecture, and the optimization process, see Fig. 1(a)-(e).

We showcase two applications of our theory. First we use quantum convolutional neural networks (QCNNs) [33] for
quantum phase recognition (QPR). QCNNs have only T = O(log n) parameters, thus our results give a strong general-
ization guarantee. In support of this, we demonstrate numerically that QCNNs have good generalization error for QPR
with only logarithmic training resources, N ∈ O(log2 n). Namely, we use QCNN architectures for QPR on ground
states of the generalized cluster Hamiltonian of up to 64 qubits. The ground state phase diagram of this Hamiltonian
has four phases: trivial, ferromagnetic phase, anti-ferromagnetic, and symmetry-protected topological [40]. Fig. 1(f)
shows the performance of the QCNN in classifying ground states into these four phases. Second, we highlight the task
of quantum compiling, a crucial application for the quantum computing industry. State-of-the-art classical methods
for approximate optimal compiling of unitaries often employ exponentially large training data sets [41–43]. However,
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FIG. 1: (a)-(e) Illustration for the various types of QMLM considered in this work. (f) Performance of the QCNN
for quantum phase recognition on ground states of the generalized cluster Hamiltonian. Blue (red) indicates correct
(incorrect) classification. Crosses denote the training data points. Thick black lines delimit the five regions of the

underlying phase diagram, with four different phases.

our work indicates that only polynomial-sized data sets are needed, suggesting that state-of-the-art compilers could
be further improved. Indeed, we numerically demonstrate that compiling the quantum Fourier transform requires
only linearly many training data points. With this significantly reduced cost, we achieve successful compilation for
up to 10 qubits. Assuming favourably initialized training, we compile the QFT on up to 40 qubits.

III. Impact and Outlook

Our work injects new hope into the field of QML, as good generalization is guaranteed from few training data
for any efficiently implementable QMLM. We have supported our general theoretical results by promising numerical
demonstrations for two specific applications of interest. Already these two applications carry a lot of potential.

Quantum phase classification is an exciting application of QML. While Ref. [33] has already successfully applied
QCNNs to this problem, our work is the first to rigorously prove their good performance, as a special case of our
general theory. Moreover, our analysis allows us to go beyond QCNNs and extract general principles for how to
ensure good generalization. As generating training data for this problem asks an experimenter to prepare a variety
of states from different phases of matter, which will require careful tuning of different parameters in the underlying
Hamiltonian, good generalization guarantees for small training data sizes are crucial to allow for the implementation
of phase classification through QML in actual physical experiments.

Several successful protocols for unitary compiling make use of training data [41–43]. However, prior work has
relied on exponentially large training data sets. Such large data sets are problematic: They lead to similarly high
computational complexity and are expensive to obtain in physical experiments. Our results provide guarantees on
the performance of unitary compiling with only polynomial-size training data, for the relevant case of efficiently
implementable unitaries. As we have numerically demonstrated for the Quantum Fourier Transform, this reduction
in training data size makes unitary compiling scalable. Moreover, our results provide new insight into why the
VAns algorithm [44] is successful for unitary compiling. We believe that the QML perspective on unitary compiling
advocated for in this work will lead to new and improved ansätze, which could scale to even larger systems.

We envision a variety of further applications for our theory First, recent methods for variational dynamical sim-
ulation rely on quantum compiling to compile a Trotterized unitary into a structured ansatz with the form of a
diagonalization [36, 37, 45, 46]. This allows for quantum simulations of times longer than an iterated Trotterization.
We expect our quantum compiling results to carry over to this application and thus allow these variational quantum
simulation methods to use fewer training resources. Second, discovering quantum error correcting codes can be viewed
as a ML problem [32, 33, 47–51]. Both classical [47–51] and near-term quantum approaches [32, 33] to this problem
can benefit from our generalization bounds and enjoy reduced training data requirements. Finally, autoencoders and
generative adversarial networks (GANs) have recently been generalized to the quantum setting [8, 31, 52, 53]. Both
employ training data, and hence our generalization bounds provide quantitative guidance for how much training data
to employ in these applications. Moreover, our results can provide guidance for ansatz design in these settings.

Our results do not prove a quantum advantage of quantum over classical machine learning. However, generalization
bounds for QMLMs are necessary to understand their potential for quantum advantage: QMLMs can outperform
classical methods, assuming both achieve small training error, only when QMLMs generalize well, but classical ML
methods do not. We therefore consider our results a guide in the search for quantum advantage of QML.
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The Quantum Fisher Information matrix (QFIM) is a central metric in promising near-
term algorithms, such as Variational Quantum Imaginary Time Evolution. Calculating the
QFIM, however, is computationally expensive and scales quadratically with the number of
model parameters. Here we propose sampling techniques to approximate the QFIM at a
constant cost.

While fault-tolerant quantum computers are not yet available, a computational paradigm par-
ticularly suitable for near-term, noisy quantum devices is that of variational quantum algorithms.
In this context, Variational Imaginary Time Evolution (VarQITE) and, closely related, variational
ground state search using Quantum Natural Gradient Descent (QNG) are particularly promising
algorithms that have recently received a lot of interest [1–5]. These iterative algorithms employ
a parameterized quantum circuit as a trainable model where the number of tunable parameters d
grows with the complexity of the molecule or the size of the dataset. The computational cost of
each iteration step is quickly limited by the evaluation of the Quantum Fisher Information ma-
trix (QFIM), which, for a model with d parameters, generally requires O(d2) function evaluations.
While still manageable for small problems we are approaching hardware dimensions that allow us
to simulate increasingly larger systems where this quadratic scaling becomes the bottleneck. Di-
agonal and block-diagonal approximations of the QFIM have been proposed [3], which reduce the
cost from quadratic to linear in d. However, these methods do not allow access to the full QFIM
but remain restricted to the (block-)diagonals and thereby do not properly capture parameter
correlations.

To remedy the increasing costs in high-dimensional parameter spaces, we propose using simul-
taneous perturbation stochastic approximation (SPSA) [6, 7] techniques to approximate the QFIM
at a constant cost. A similar idea has previously been explored for the classical Fisher Information
in context of the Expectation-Maximization algorithm [8]. By tuning the number of stochastic
samples, our approach allows a flexible trade-off between asymptotically exact evaluation of the
QFIM, which is important for time evolution algorithms like VarQITE, and reduced computational
cost, which can be advantageous for ground-state searches.

Our approach is particularly efficient if no exact state evolution is required, as is e.g. the case
for ground-state search. This allows us to iteratively construct a QFIM estimate with only a small
number of stochastic samples in each iteration. Further it’s important to note that the estimate
of the QFIM is independent of the Hamiltonian we evolve. If the system’s Hamiltonian consists
of many non-commuting Pauli groups, and therefore requires sampling a large number of circuits,
the overhead to estimate the QFIM is negligible.

We test our algorithm first in simulations and then on real hardware. In the simulations, we find
the solution of a classical MAXCUT problem and learn a probability distribution using generative
learning and Variational Quantum Boltzmann machines [4]. On real hardware, we prepare the
ground state of the LiH molecule for a given bond distance. The experiments show that our
method is able to approximate VarQITE and QNG reliably at a fraction of the computational
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cost. As a consequence, we show that our proposed technique outperforms other standard gradient-
based algorithms for variational ground state search. The advantage is especially prominent if
the expectation value calculation of the system energy requires a large number of circuits, as is
frequently the case for molecular Hamiltonians.

The preprint of our paper is available at [9].
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The theory of quantum algorithms promises unprecedented benefits of harnessing the laws of
quantum mechanics for solving certain computational problems. A persistent obstacle to using such
algorithms for solving a wide range of real-world problems is the cost of loading classical data to a
quantum state. The worst case complexity of preparing an arbitrary quantum state is exponential
with the number of qubits [1]. For this reason, the most significant quantum speed-ups occur when
the quantum algorithm [2–7] operates on an input state that is easy to prepare, such as the uniform
superposition of all computational basis states. For algorithms that rely on loading data into an
arbitrary quantum superposition state, an efficient means to prepare input states is a prerequisite to
quantum speed-ups [8–11].

Several solutions to the problem of quantum state preparation have been proposed [1, 12–17], but
all produce circuits with width or depth growing at least linearly with the size of the input vector [1].
For example, the top-down method proposed in Ref. [12] achieves the exponential compression of
the quantum circuit width while requiring O(N) quantum circuit depth for N -dimensional data.
On the other extreme end, the bottom-up method [17] achieves the exponential compression of the
quantum circuit depth while requiring O(N) quantum circuit width and entangled information in
ancillary qubits. Since there is an extra resource overhead in many quantum algorithms due to the
quantum measurement postulate [18, 19], such linear cost can impose restrictions on possible speed-
ups, dominating the computational cost of the intended quantum application.

In this work, we present a quantum state preparation method that achieves sublinear scaling on
both quantum circuit resources. More specifically, we develop a bidirectional strategy that effectively
combines the aforementioned approaches in a way that the trade-off between computational time and
space can be configured. Both temporal and spatial complexities depend on the parameter s ∈ [1, n],
which adjusts the trade-off between computational time and space. Given an N -dimensional input
vector, the total time complexity of the bidirectional algorithm is Oc(N)+Od(2s+log22(N)−s2), where
Oc(N) is the time of the classical preprocessing to create the quantum circuit and Od(2s+log22(N)−s2)
is the quantum circuit depth. Typically the same input vector is loaded l � N times, and hence the
amortized computational time is Od(2s + log22(N) − s2). Note that classical preprocessing is also
common in classical computing and is necessary in other quantum state preparation methods as well.
The spatial complexity (i.e. the width) of the circuit is Ow((s+ 1)N/2s).

Quantum state preparation algorithms aim to create a state
∑

p |xp|eiωp |p〉 that encodes a nor-

malized vector x = (|x0|eiω0 , . . . , |xN−1|eiωN−1) as the probability amplitudes. Several of the existing
methods can be understood as a walk on a binary tree [1, 15, 17, 20]. Each tree node corresponds
to a controlled gate operation and the height increases with the number of qubits. Two edges stem-
ming from each node indicate that each controlled gate operation splits the Hilbert space into two25
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Figure 1: Schematics of the bidirectional algorithm. (a) Angle tree example with a split at level s = 2.
The blue and red nodes (α1 and α2) correspond to the bidirectional procedure first stage. In each of
the two sub-trees of the first stage, 4 of the 8 amplitudes expected as input by stage 2 are encoded
using a top-down method. The green node (α0) above the tree split correspond to the second stage
single sub-tree, subject to a partial DCSP bottom-up procedure. The first stage red nodes (j > 1) are
no longer associated with an ancilla since they are now encoded through a top-down approach. (b)
Block diagram circuit, corresponding to the tree in (a). In stage 1, the Ak operators (the index k is
related to angle vectors αk upper index) are responsible for encoding the amplitudes that will be used
as input by stage 2. In this example, each Ak operator encodes 4 amplitudes from a total of 8. The
B operator is the partial DCSP for 8 amplitudes, which is initialized with the expected state for the
split level 2 and continues with the traditional algorithm. (c) Detailed view of (b), generated by the
bidirectional algorithm for a real and positive 8-dimensional input vector.

subspaces. Therefore, after n layers, there can be 2n subspaces with distinct probability amplitudes.
Depending on the choice of the walk direction, different state preparation strategies, such as top-down
and bottom-up approaches, can be constructed. The bidirectional state preparation (BDSP) method
combines both bottom-up and top-down strategies as walking on the tree in both directions.

The BDSP algorithm starts by informing a level v = s (enumerated from bottom to top, where
1 ≤ s ≤ n) at which the tree is split, followed by two stages. In the first stage, it segments the tree
section below s into 2n−s sub-trees of height s. The 2n−s nodes at level s are the roots of these sub-
trees. The number of sub-trees determines how many initial sub-states should be prepared in the first
stage of the algorithm. The amplitude values of these sub-states aj = (aj,1, . . . , aj,2s) (1 ≤ j ≤ 2n−s)
are loaded concurrently using a sequential algorithm [1, 15, 20] based on the TDSP method. The
initial sub-states are the input of the second stage of BDSP. They reproduce the state that would be
created by the bottom-up steps up to the split level s. In the second stage, the sub-states are combined
to generate the complete state by the divide-and-conquer approach. The bottom-up algorithm takes
the state prepared in the first stage as the input, and starts walking on the tree from the split level.

The free parameter s ∈ [1, n] determines the balance between the top-down and the bottom-up
approaches. At two extreme cases of setting s = n and s = 1, the top-down and the bottom-up
approaches are respectively recovered. At the equilibrium point s = dn/2e, quadratic reduction in
both quantum circuit depth and width can be achieved. The configuration parameter can be viewed
as a hyperparameter that can tune circuit sizes and the number of CNOT gates according to the
compound of application and hardware properties.
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ABSTRACT

We present a quantum reinforcement learning framework optimized by evolutionary algorithm.
The model combines a quantum-inspired tensor network and variational quantum circuits. We
demonstrate via numerical simulation that the proposed model can process input data with
dimensions larger than the capacity of existing quantum devices.

Keywords: Quantum neural networks, Reinforcement learning, Evolutionary optimization

INTRODUCTION
Recent advance in classical reinforcement learning (RL) and quantum computation (QC) points to
a promising direction of performing RL on a quantum computer. However, potential applications
in quantum RL are limited by the number of qubits available in the existing quantum devices.
For example, most of the interesting RL testing environments are with observation or state in
a dimension which is much larger than the capabilities of existing quantum computers. It is
extremely difficult to load such data directly into a quantum computer. Significant improvements
are needed in order to construct quantum RL agent which can successfully deal with such testing
environments.

In this work we present two frameworks of deep quantum RL tasks using a gradient-free
evolution optimization: First, we apply the amplitude encoding scheme to the Cart-Pole problem;
Second, we propose a hybrid framework where the quantum RL agents are equipped with
hybrid tensor network-variational quantum circuit (TN-VQC) architecture to handle inputs with
dimensions exceeding the number of qubits. This allows us to perform quantum RL on the more
complicated MiniGrid environment.

In the first part of the experiment, we employ the amplitude encoding to encode the classical
input vector into a quantum state such that an n-dimensional vector can be encoded into a (log2 n)-
qubit system. We demonstrate the quantum advantage of parameter-saving with the amplitude
encoding in the Cart-Pole problem. In the second part, we construct a quantum-classical hybrid
TN-VQC architecture. The tensor network part, operating on a classical computer, is used to
compress the incoming state vector into a smaller vector suitable for a quantum computer to
process. This smaller vector is then processed by the VQC to produce the action for the next move.
The whole TN-VQC model is trained in an end-to-end manner similar to the ones described in
the work Chen et al. (2021b). However, different from the previous work, here we optimize the
quantum RL model via gradient-free evolutionary method which has the potential to perform
better in environments with sparse rewards. We demonstrate via numerical simulation that such
a hybrid TN-VQC quantum RL model can successfully learn the proper policy in the MiniGrid
environments with a 147-dimension state/observation vector. In summary, the hybrid TN-VQC
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architecture provides a natural way to perform efficient compression or feature extraction of
observation vectors, enabling further quantum RL applications on noisy intermediate-scale
quantum devices through leveraging the both the classical and quantum computing paradigms.

The result described in this abstract has been posted on the arXiv Chen et al. (2021a).
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Abstract: 

Identifying optimal thermodynamic processes has been the essence of thermodynamics since its inception. 
We harness differentiable programming to optimize finite-time processes in a quantum thermal machine. 
Overcoming hard physical constraints, our scheme discovers profiles that are superior to previously 
suggested protocols and finds flaws in a previously employed thermodynamic quantity. 

 

Extended abstract: 

Since its inception, thermodynamics has been concerned with performance optimization by identifying 
constraints and bounds on energy conversion processes. For example, the ideal Carnot engine is designed 
to reach maximal efficiency, but this upper bound is theoretically obtained for arbitrarily slow, quasistatic 
processes. In contrast to arbitrarily slow processes, real thermal devices operate on finite-time cycles, 
and they are naturally described in terms of finite-time thermodynamics [1,2]. This theory is concerned 
with e.g., how the efficiency of thermal machines erodes when heat-to-work conversion processes take 
place in finite-time cycles [3,4].  

Quantum thermal machines, in which e.g., quantum coherences, correlations, and quantum statistics play 
a decisive role, cater fundamental understanding of thermodynamics at the nano and atomistic scale [5-6]. 
Beyond fundamental interest, quantum thermal machines promise compact, fast, and efficient work 
extraction and refrigeration schemes for quantum devices. It remains, however, a challenge to harness 
such effects and achieve a quantum advantage in thermal machines [7-11]. 

Optimizing the performance of nanoscale quantum thermal machines is a central problem in the rapidly 
emerging field of quantum thermodynamics. Techniques such as shortcut-to-adiabaticity (STA) allow the 
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design of finite-time protocols, which reproduce the same final state of an adiabatic time evolution, yet at 
a price of supplemental work on the system [12-
16].  

In this work, we harness state-of-the-art 
machine learning (ML) techniques to optimize 
the performance of quantum thermal machines. 
Specifically, we adopt Differentiable 
Programming (DP) [17,18], to find optimal 
refrigeration schemes for the quantum Otto 
cycle under STA conditions (see Fig. 1). We 
consider a specific class of STA protocols - local 
counterdiabatic driving (LCD), which are 
advantageous to the realization of quantum 
engines since they only require the application 
of local time-dependent potentials. The STA 
conditions serve as constraints that are imposed 
on our optimization problem. From a 
reinforcement learning (RL) perspective, in this 
scheme an agent plays a ``game", where the 
time-dependent frequency 𝜔(𝑡) of the 
harmonic oscillator acting as the working 
medium of the refrigerator can be varied in the 
interval  𝑡 ∈ [0, 𝜏). For each attempted strategy, 
𝜔(𝑡), the agent receives a reward designed to 
minimize the energetic cost of the protocol 
while subjected to the physical constraints 
imposed by the LCD condition.  

The driving profiles that are discovered by the ML scheme are exemplified in Fig. 2. Our method discovers 
driving protocols of the strokes of an Otto engine that perform twice as better compared to previously 
conceived solutions [19,20]. Our scheme finds a nontrivial family of functions where the first and second 
derivatives follow each other; we conclude that this is a crucial property induced by the cost function we 
have utilized. Furthermore, employing the DP-ML optimization scheme enabled us to uncover a flaw in a 
previous definition for the energetic cost of STA driving [21]. In this case, the ML optimization identified 
violations of thermodynamic laws such as the Carnot bound. In contrast, we use a modified definition of 
the energetic cost of the STA protocol based on the time-averaged Schmidt norm of driving Hamiltonian 
[22,23] which provided physically transparent results that obeyed the Carnot bound and reached the 
adiabatic limit. 

The advantage of the DP-ML scheme derives from it using the exact gradients of the quantity of interest 
with respect to variational parameters, hence reducing the number of required iterations to reach an 
extremum [24,25]. This enabled an effective search in the large multidimensional variational parameter 
space of functions fulfilling STA conditions.  

Figure 1 - Scheme of the Otto refrigerator in the energy-

frequency domain. A cycle includes a compression stroke 

(AB) of duration 𝜏, an instant isochoric stroke (BC) with the 

system coupled to a hot bath, an expansion stroke (CD) of 

duration 𝜏, and another instant isochoric stroke with a cold 

bath (DA). Refrigeration corresponds to the withdrawal of 

heat 〈𝑄4〉 from the cold bath. The energetic cost of the 

cycle is the sum of the work contributions 〈𝑊1〉 and 〈𝑊3〉, 

along with the energetic cost of the STA driving, 〈𝐶𝐴𝐵〉            

and 〈𝐶𝐶𝐷〉. 
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Since our optimization method is general, it can be easily turned to optimize other cost functions and 
figures of merits with little 
effort. Our framework could be 
directly applied in other control 
problems, such as entropy 
reduction in closed systems 
[26], dynamical decoherence 
control [27], steering chemical 
reactions [28], and for the 
design of quantum electronic 
and thermal machines [29]. We 
paved the way for solving hard-
constrained problems using 
state-of-the-art ML tools, by 
orchestrating an objective as 
the minimum of a cost function. 
More generally, our study 
shows that ML has an advantage 
over standard theoretical tools 
in designing quantum devices, 
thus making them favorable for 
an experimental realization. 

  

Link to preprint 
 
 
  

Figure 2 - Examples of frequency profiles  𝜔(𝑡) discovered by the 
DP-ML scheme normalized by the compression or expansion stroke 

duration 𝜏. The gray dashed-dotted line displays the benchmark. 
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Quantum Natural Language Processing (QNLP) deals with the design and implemen-

tation of NLP models intended to be run on quantum hardware. The categorical com-

positional distributional model of meaning that combines vector space semantics with

compositional syntax and grammar, compels a formal analogy of the tensor structure it

features with the mathematical structure of quantum theory. This encourages its use

for QNLP since grammatical sentences can then naturally be represented as quantum

processes. Here we present experimental results for simple sentence classification tasks

with small to medium scale datasets, from implementations on noisy quantum computers

provided by IBMQ. (Extended Abstract based on Refs. [1] and [2])

Introduction. DisCoCat (DIStributional COmpositional CATegorical) [3] is a framework for
models of natural language meaning. It comes with a rigorous treatment of the interplay between
syntax and semantics and with a convenient diagrammatic representation in terms of string diagrams.
The conception of this framework was the fruit of recognising the shared formal structure between
pregroup grammar [4] and compact closed categories like that of finite-dimensional Hilbert spaces
(FHilb). Sentences are here represented as string diagrams with an open wire carrying the sentence
meaning interpreted in the chosen semantics category. The motivation for such a framework stems
from the ambition to reconcile vector space semantics with formal approaches to linguistics, and to
address the question of how the meaning of a sentence arises from the meanings of its words. In
particular, a clear separation is made between syntax and semantics, where compositionality is made
explicit in grammar. Over the past 10 years DisCoCat also attracted interest as it was demonstrated
to be useful for capturing linguistic phenomena such as ambiguity and entailment [5,6]. Furthermore,
part of the motivation for DisCoCat models is the interpretability of language models, which is a
quality that does not trivially characterise modern language models.

Choosing to interpret the string diagrams in FHilb as quantum circuits then the ‘computation of
meaning’ – a tensor contraction – would naturally be estimated on a quantum computer. In this case
there is a correspondence between words and quantum states and between grammatical structure and
Bell effects. Notably, the work of Zeng and Coecke [7] built on this idea and presented a quantum
algorithm for sentence similarity by reduction to the closest vector problem. Today, NISQ processors
are readily available and provide an opportunity for implementing simple NLP tasks using DisCoCat.

Here, we report on a series of experiments, presented in Refs. [1] and [2], which are the first
experiments that implement a DisCoCat model – in fact any NLP model – on an actual quantum
machine. All three experiments successfully address simple binary classification tasks.

The tasks. The first task as a basic proof of concept, addressed in Ref. [1], takes the labels of
the sentences in a very small dataset of 16 sentences as ‘truth values’. The second task concerns a
‘meaning classification’ of 130 sentences (‘food’ vs ‘IT’), and the third task concerns the syntactical
role of ‘relative pronouns’ in noun phrases – whether the relative pronoun replaces the subject or the
object of the respective relative subclause – with a dataset of 105 sentences [2].

The experiments. Our pipeline begins by parsing each sentence using a pregroup grammar built
out of atomic types n for nouns and s for sentence. The name of a pregroup grammar stems from
the fact that every atomic type t ∈ {n, s} has a left- and a right- adjoint type (tl and tr), with the
property that tl ·t→ 1 and t ·tr → 1, where 1 is the trivial type. The existence of two different inverses
is motivated by the fact that in language word-order can carry meaning. The pipeline then involves
translating each type-tagged sentence into the induced DisCoCat diagram, a string diagram. This
diagram represents the grammatical reduction of the sentence and can be seen as a graphical proof
that the sentence is grammatical, as witnessed by the reduction of the product of types of all words36



to the s-type. Finally the boxes are filled with parametrised quantum circuits, giving them semantics.
Using a quantum compiler [8], running the circuits on a quantum computer returns outcome statistics
from which the labels are estimated.

person prepares tasty dinner
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Figure 1: Example sentence ‘person prepares tasty dinner’ with in (a) its DisCoCat diagram reflecting
the pregroup parsing and in (b) a parametrised quantum circuit it can be mapped to.

Consider the sentence ‘person prepares tasty dinner’ (from the second task’s dataset). Fig. 1a
shows its DisCoCat diagram based on the pregroup parsing with the cups corresponding to the
pregroup reductions n · nr → 1 and nl · n → 1 and the output type indeed being that of a sentence.
Fig. 1b shows a corresponding quantum circuit. A hyperparameter regards assigning a number of
qubits to each pregroup type. Here each type is assigned one qubit due to the devices’ limitations.
These qubits define Hilbert spaces in which the word meanings are represented by states prepared
from a trivial reference state by parameterised quantum circuits (ansaetze). Thus, a word state is
defined by the parameters of the quantum circuit that prepares it. Further, states corresponding to
person and dinner were turned into effects, by ‘bending them down’, in order to reduce circuit width
and the amount of required post-selection to implement non-deterministic effects.

Having split the datasets into respective train and test subsets, the model parameters are trained on
the former subset via the SPSA optimiser against a Cost function measuring the discrepancy between
predicted and actual labels. Despite the typical noise that comes with currently available NISQ
machines, in all three experiments the model converges well, i.e. the Cost is minimised successfully
1. In addition, classical simulations were performed to see the projected behaviour of the model in a
noise-free set-up. The typical errors after 100 SPSA iterations are around 8-25% on the training data
and 17-37% on the test data, depending on which of the three tasks.
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Figure 2: Results for the first, second and third task in (a), (b) and (c), respectively (qn and d are
hyperparameters determining the ansatz). See Refs. [1],[2] for details.

Conclusions. From a quantum machine learning perspective, this is an instance of a variational
quantum circuit approach, where, importantly, the structure of the circuit, that is its connectivity, is
not rooted in mere heuristics, but in fact dictated by the sentence’s syntax. From an NLP perspective,
contemplating an obvious question today, namely whether one can do NLP on a quantum computer,
the work serves as proof of concept and indeed paves the way to such QNLP. Future work may further
scale up the NLP tasks one can consider as the available quantum machines improve, do compara-
tive analyses with approaches that do not employ compositionality, and design scalable experiments
towards demonstrating quantum advantage.

1We used IBM’s machines ibmq_montreal, ibmq_toronto and ibmq_bogota with log2QuantumVolume = 5.37
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Regression and Classification with Optimized Random Features: Applications of
Exponential Speedup by Quantum Machine Learning without Sparsity and Low-Rankness

Assumptions

We develop a quantum algorithm for sampling from an optimized probability distribution
of random features, in runtime O(D) that is linear in dimension D of input data, so as
to significantly reduce and provably minimize the required number of random features for
achieving common learning tasks, regression and classification.

Background.— Kernel methods are a class of the most important methods in ML [1]. However, typical kernel
methods, which compute an N × N Gram matrix, are not scalable as N gets large. To scale up kernel methods
to big data, random features [2, 3] are one of the most highly appreciated technique of central use in practice.
By random features, we will represent a non-linear function f : RD → R to be learned as a linear combination
f(x) ≈ f̂(x) =

∑M
m=1 αmϕ(vm, x) of non-linear feature maps ϕ(v, x) = e−2πiv·x, that is, sin and cos. Note that

D-dimensional data are considered. Learning with random features is achieved by sampling many feature maps
ϕ(vm, ·) at random parameters v1, . . . , vM ∈ RD, followed by finding appropriate coefficients α1, . . . , αM by convex
optimization using the N examples. Conventionally, v1, . . . , vM are sampled from a data-independent probability
distribution dτ(v) depending only on a kernel function k in kernel methods, but this may require a large number
of features M = Õ(1/ε2) for achieving learning to accuracy ε [2, 3]. The requirement of large M slows down the
decision of all M features, the regression over M coefficients, and the evaluation of the learned function f̂(x) in
using it after the learning. Acceleration of kernel methods with random features is not a specific problem but of
central importance for their various applications, e.g., to computer vision, natural language processing, marketing,
robotics, and ML-assisted investigation of physics.

Problem and Result.— To achieve the acceleration, we will aim at minimizing M required for the learning.
Recent work [4] has proposed to sample features from a data-optimized probability distribution, that is, a dis-
tribution that puts greater weight on important features optimized for the data. The optimized distribution is
given by a weighted distribution q∗ε (v)dτ(v) ∝ 〈ϕ(v, ·)|(Σ + ε1)−1ϕ(v, ·)〉L2(dρ)

dτ(v), where Σ is a linear opera-
tor on a space L2(dρ) of functions, depending both on the kernel k and the data distribution dρ(x) [4]. The
use of q∗ε (v)dτ(v) can significantly reduce the required number M of features for the learning, which is indeed
provably optimal up to a logarithmic gap [4]. We call features sampled from this data-optimized distribution
optimized random features. However, a problematic computational bottleneck arises from each sampling step from
q∗ε (v)dτ(v) due to the inversion of Σ + ε1, which is infinite-dimensional. A discretized approximation of Σ using
bits yields an O(exp(D))-dimensional operator for data dimension D [5]. As a result, sampling from q∗ε (v)dτ(v)
requires an exponential runtime O(exp(D)) for inverting this operator as long as we use the existing classical
algorithms [4, 6, 7]. To achieve our aim, the problem is how to perform sampling from q∗ε (v)dτ(v) efficiently. One
may wonder why Ref. [4] is appreciated despite the exponential runtime, but Ref. [4] is significant in the context
of statistical learning theory. In contrast, our results indeed make this sampling from q∗ε (v)dτ(v) possible with
quantum computation in as fast as linear runtime O(D), and also demonstrate how to use this quantum algorithm
to speed up central ML tasks, regression and classification, as summarized in the following (see also the technical
version [5, 8]).

1. ([5]) We develop a quantum algorithm for sampling from q∗ε (v)dτ(v) with exponential speedup in D:

Runtime of our quantum algorithm: O(D)↔ Runtime of classical algorithms [4, 6, 7]: O(exp(D)).

2. ([5]) We show that we can combine M features sampled by our quantum algorithm with optimization of
coefficients by a well-established classical algorithm, i.e., stochastic gradient descent (SGD), to achieve
the regression task as a whole in time O(MD/ε2), without canceling out our exponential speedup in D.
Importantly, M can be much smaller than conventional random features [2, 3], achieving a significant
acceleration as discussed below.

3. ([8]) We also show that the combination of our quantum algorithm with the SGD can achieve a classification
task (under a well-studied low-noise condition [9–11]) in time O(MD polylog(1/ε′)), where ε′ is an excess
classification error [8]. This M can also be much smaller than conventional random features [2, 3]. This
significantly accelerates leading classification algorithms [9–11] based on kernel methods in terms of M ,
without ruining their exponential error-convergence speed in ε′.39



Advantage.— Our quantum algorithm makes it possible to sample optimized random features minimizing M ,
by improving the bottleneck faced by classical sampling algorithms [4, 6, 7]. In the following, we clarify this
advantage for the regression task [5], while Sec. 3.2 of our technical version [8] also shows a similar advantage
for the classification task. The minimal M for achieving the regression task is given by the degree of freedom
d(ε) = Tr Σ(Σ + ε1)−1, which is determined depending both on kernel k and data distribution dρ [4]. In the worst
case, we may only have M = Õ(d(ε)) = Õ(1/ε2) [4], the same scaling as conventional random features [2, 3]. But
for a Gaussian kernel and a sub-Gaussian data distribution, we have an exponential advantage in ε [4]

Our quantum algorithm: M = Õ(d(ε)) = O(polylog(1/ε))↔ Conventional random features [2, 3]: M = Õ(1/ε2).

The advantage becomes significant especially when we use the function learned with optimized random features.
Once the learning has finished, the learned function f̂(x) =

∑M
m=1 αmϕ(vm, x) can be evaluated within runtime

O(MD) = O (D polylog (1/ε)) in the above case. For comparison, conventional random features require O(MD) =
Õ (D/ε2) [2, 3]. Our quantum algorithm makes it possible to achieve this exponential advantage in ε in using
the function learned with optimized random features, feasibly in linear runtime O(D). This advantage is crucial
especially for applications of ML that requires real-time computing, e.g., an embedded system, robotics, feedback
control in physical experiments, and machine-learning-based decoders for quantum error correction.

As a result, we provide a promising framework of quantum machine learning (QML) that leverages our quantum
algorithm for sampling optimized random features, to achieve the optimal M among all algorithms using random
features. The optimized random features can be used for a general class of kernel-based regression tasks [5] as
shown above, and also kernel-based classification tasks as we show in Ref. [8], which are of central importance in
ML. The significant advantage indeed appears for the Gaussian kernel and the sub-Gaussian data distribution,
in both the regression and classification tasks [5, 8]. These results show end-to-end applications of quantum
computation in the central problems of ML.

Impact on QML.— The novelty of our results is that our QML algorithm is exponentially faster than the existing
classical sampling algorithms [4, 6, 7], yet is still free from sparsity and low-rankness assumptions. QML algorithms
such as Refs. [12–15] may achieve exponential speedups over classical algorithms only if matrices involved in the
algorithms are sparse. Another class of QML algorithms such as Refs. [16–19] do not require sparsity but may
attain large speedups only if the matrices have low rank. Note that recent “quantum-inspired” classical algorithms
such as Refs. [20–22] also require low rank. But power and applicability of these QML algorithms are restricted
by the assumptions on sparsity and low-rankness; that is, to attain large speedups, careful justifications of these
assumptions have been needed [23].

Our key technical contribution is to develop an approach for circumventing the sparsity and low-rankness as-
sumptions in our QML algorithm, broadening applicability of QML. A difficulty of our sampling task arises from
the fact that the discretized description of q∗ε (v)dτ(v) includes an inverse of O(exp(D))-dimensional linear oper-
ator Σ̂ε to approximate (Σ + ε1)−1, and Σ̂ε may not be sparse or of low rank (see Secs. 3.1 and E of Ref. [5]
for precise definition). Remarkably, our technique does not directly use the conventional ways of implementing a
linear operator that requires sparsity or low-rankness, yet implements Σ̂ε efficiently in time O(D). The sparse and
low-rankness assumptions can be avoided because we prove that in our sampling task, we can explicitly decom-
pose O(exp(D))-dimensional non-sparse full-rank Σ̂ε (to be inverted by quantum singular-value transformation
(QSVT) [24]) into addition and multiplication of efficiently implementable building blocks, i.e., block encodings of
diagonal (i.e., sparse) operators and quantum Fourier transform (QFT).

Wide applicability.— Owing to our circumventing the sparsity and low-rankness assumptions, our QML al-
gorithm is widely applicable to learning with representative choices of kernels, e.g., the Gaussian kernel and the
Laplacian kernel [5]. Remarkably, the advantage of our QML algorithm can be obtained in the same model of
functions f(x) as conventional random features [5, 8]. As a result, the advantage is expected to appear for practical
classes of data sets, e.g., those given by a sub-Gaussian data distribution to be learned with a Gaussian kernel.

Consequently, our results open a route to a widely applicable framework of QML without sparsity and low-
rankness assumptions yet taking advantage of large quantum speedups in the central ML tasks, regression and
classification. QSVT and QFT may make our algorithm hard to simulate by classical computation, and hard to
perform even on near-term noisy quantum devices. However, in contrast to heuristic QML algorithms for noisy
quantum devices such as Ref. [25] where no proof bounds its runtime, our QML algorithm aims at applications on
large scales; to achieve this aim, we analytically prove the exponential quantum speedup over the existing classical
algorithms. The wide applicability of our QML algorithm makes it a promising candidate for “killer applications”
of universal quantum computers in the long run; after all, large-scale ML will be eventually needed in prac-
tice. Therefore, our results establish a more solid theoretical motivation based on QML for further technological
development toward realizing the quantum computer. 40
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Automated NV-centre calibration for quantum internet nodes  
 
Eliska Greplova, Achmed Marif, Matteo Pompili, Ronald Hanson


Abstract: Quantum internet is one of the exciting uses of quantum technologies. NV centres have 
emerged as an excellent platform for distributed entanglement links key for its realisation. In this 
work we introduce a physics guided reinforcement learning algorithm for their automated tuning 
and operation completely free of human operator surveillance. 
 
 


Recent explosive growth of quantum technologies promises a range of exciting technological 
applications, from digital quantum computing to quantum networks for quantum communication 
[1]. Contemporary quantum devices are reaching the boundaries of both classical simulatability 
and scalable classical control. As a possible resolution of these challenges, the field of artificial 
intelligence (AI)-driven quantum control has emerged.  

Generally the interpretation of the data acquired by measuring quantum devices is a complex task 
that requires the analysis by a skilled human operator. This fact is also a central reason why the 
automation of large scale quantum experiments has been evading effective solutions via standard 
algorithmic techniques in favour of direct control by human experts. While such approaches 
function well for a small scale devices in university and industry labs, they are not scalable 
towards large-scale devices and industry production. 


The adoption of AI and machine learning techniques across many science and technology fields 
fuelled the creation of a new field within the quantum devices community: AI-driven tuning of 
quantum devices. The goal of these efforts is to employ advanced feature recognition and 
decision making techniques of artificial intelligence to analyse the features in the incoming 
quantum devices data and realise the tuning of the chip in the real time in a completely 
autonomous way. 


The first efforts towards useful practical utilisation of these methods have been established within 
the field of semiconductor quantum dots, where all stages of operator-free tuning have been 
experimentally established [2-6]. In addition to that, a tuning speed outperforming human 
operators has been achieved [7].


In the context of automated tuning, NV centres [8], a leading platform for quantum 
communication, remained unexplored until now because of their intricate electronic structure that 
is yet not fully theoretically understood. 
This theoretical complexity presents an 
obstacle to formulating good policy for 
training of AI algorithms.  
 
In this work, we take an approach of 
radically simplifying the NV-centre model 
to only consider a handful of energy levels 
that are most relevant for distributed 
entanglement experiments. This approach 
allows us to formulate 6-level Born-
Markov master equation description of the 
system. At the same time, this high-level 
theoretical formalism appears to be 
sufficient for the generation of experiment-
like measurement data traces, which, in 
turn, provide us with the wealth of data for 
theoretical analysis as well as for training 
of the machine learning models.  
 
Our master equation model allows us to 
understand the relation between the measured number of photons and detuning of the measured 

Fig. 1: Theoretical analysis of the number of measured 
photons as a function of the measurement laser detuning 
from the resonant frequency on the NV centre qubit.
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frequency from the resonance (example for one of the controlling lasers in Fig. 1) and therefore 
formulate a rigorous bound on the distance towards resonance frequency. The fit shown in Fig. 1 
alone could, of course, provide us with sufficient information to tune a single laser frequency. 
However, even a single NV centre is controlled by multiple mutually dependent parameters, which 
makes the deterministic exploration of the parameter space exceedingly costly in terms of 
measurement time. 
 
In this work we approach the unfavourable scaling of NV centre frequency tuning via a 
combination of reinforcement learning (RL) and the physical modelling described above. 
Specifically, the fits like the one shown in Fig. 1 allow us to define a laser frequency search 
domain as well as a suitable way to discretize it. Then we employ Deep-Q Networks, a type of 
reinforcement learning, to adjust the control laser frequencies based on the input of the measured 
photon counts.


The results of our algorithm for one of the NV-centre control lasers is illustrated in Fig. 2. The 
upper panel shows the number of measured photon counts as a function of the measurement 
number. The desirable result is to keep the photon count above the threshold of 10 photons, 
which corresponds to the laser frequency being on resonance with the NV centre qubit. One can 
observe that our RL agent recovers the photon count in just a few iterations and for the most part 
of the measurement times retains the measured photon number consistently up. The bottom 
panel of the Fig. 2 shows a benchmark of our method against standard error correction technique 
based on the sampling from the photon count distribution by visualising detuning for both 
methods as function of the measurement iteration. 
 
In conclusion, we present physics modelling guided reinforcement learning technique for 
automated on-device real time NV-centre tuning. Our method presents the first step towards fully 
autonomous operation of distributed entanglement links for quantum internet.


Fig. 2: The upper panel illustrates the actions of the RL agent based on the incoming photon count. The 
lower panel shows the comparison of the detuning from the resonance frequency of the RL agent and a 
benchmark naive corrector. 43



1. Wehner, Stephanie, David Elkouss, and Ronald Hanson. "Quantum internet: A vision for the 
road ahead." Science 362.6412 (2018).


2. Zwolak, Justyna P., et al. "Autotuning of double-dot devices in situ with machine learning." 
Physical review applied 13.3 (2020): 034075.


3. Kalantre, Sandesh S., et al. "Machine learning techniques for state recognition and auto-tuning 
in quantum dots." npj Quantum Information 5.1 (2019): 1-10.


4. Durrer, Renato, et al. "Automated tuning of double quantum dots into specific charge states 
using neural networks." Physical Review Applied 13.5 (2020): 054019.


5. Lennon, Dominic T., et al. "Efficiently measuring a quantum device using machine learning." npj 
Quantum Information 5.1 (2019): 1-8.


6. Nguyen, V., et al. "Deep reinforcement learning for efficient measurement of quantum devices." 
npj Quantum Information 7.1 (2021): 1-9.


7. Moon, Hyungil, et al. "Machine learning enables completely automatic tuning of a quantum 
device faster than human experts." Nature communications 11.1 (2020): 1-10.


8. Pompili, Matteo, et al. "Realization of a multinode quantum network of remote solid-state 
qubits." Science 372.6539 (2021): 259-264.


44


