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FLIP: A flexible initializer for arbitrarily-sized parametrized quantum circuits
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Developing efficient methods for the training of quantum circuits is critical to the success of any
variational quantum algorithms. We address this task from an initialization perspective and propose
a novel meta-learning scheme which not only surpasses state-of-the-art strategies but also allows to
initialize larger circuits than used during training. Pre-print: arXiv:2103.08572

Developing more efficient methods for the training of parametrized quantum circuits (PQCs) is urgently
needed to explore further the potential offered by variational quantum algorithms (VQAs) [1, 2]. Drawing
and extending ideas from the field of meta-learning [3, 4], we propose to accelerate the training of PQCs
by careful initialization of their circuit parameters, and develop a FLexible Initializer for Parametrized
quantum circuits (FLIP). Rather than relying on a predefined or a random set of initial parameters, FLIP
is trained to discover the structure of successful initial parameters from a small number of related PQCs
problems (see Figure 1); after training, it can be employed to initialize the circuit parameters of similar but
new problems. Of particular appeal, FLIP is designed to accommodate, and thus to learn from, circuits
of varied sizes (both in depth and width): a critical feature lacking in other meta-learning parameter
initializing strategies [5, 6] and state-of-the-art techniques proposed to date.

We demonstrate the performance of FLIP in three distinct scenarios: a family of problems with
proven barren plateaus, the training of quantum approximate optimization algorithm (QAOA) circuits [7],
and the training of hardware-efficient quantum circuits [8] for finding the ground state energies of 1D
Fermi-Hubbard models. A summary of the results is reported in Figure 2, showing that circuits initialized
with FLIP are significantly easier to train — both in terms of the quality of the solutions found and the
number of iterations required — compared to random initialization and even more involved initialization
strategies. Additionally, in each of these examples we verify that FLIP can successfully initialize larger
circuits than used during its training.

Overall, we find that informed initialization of quantum circuit parameters can substantially improve
the training of PQCs and thus reduce the number of circuits to be executed. As such, we expect these
techniques to be key to the current effort of extending the application of VQAs to larger problem sizes. As
gate-based quantum computing technologies mature, initialization techniques which embrace this unique
flexibility will be essential to mitigate the challenges in trainability posed for PQC-based models and
eventually scale to their application in real-world applications settings.
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FIG. 1. Overview of FLIP. FLIP aims at learning the structure of good initial parameters over families of PQCs
problems. (a) A generic PQC problem is composed of a parametrized circuit ¢ (@) and an objective C which can be
estimated through repeated measurements of the output state |1)(8)) = U/ (8)|1)o). Solving a PQC problem corresponds
to the minimization of the cost function C'(8) = C(|¢)(#))). Example for a system size of n = 3 qubits, and a quantum
circuit with i’ = 6 parameters. (b) At the core of FLIP lies an encoding—decoding scheme which maps a PQC problem
to a set of initial parameters #(°) with appropriate dimension. (Encoding) Each of the K parameters of the circuit I/
is represented as an encoding vector hj containing information regarding the parameter itself (orange squares), the
overall circuit (blue) and optionally the objective (red). Importantly, these vectors are of fixed size (here S = 5)
and uniquely represents each parameter. (Decoding) These K encodings are then decoded by a neural network, D

with weights ¢, outputting a single value 0120) per encoding hj. Taken together, the encoding and decoding produce
a vector of initial parameters 8(°) which is function of the details of the circuits and objectives, and with dimension
always matching the number of circuit parameters. (¢) Training FLIP consists in adapting the weights ¢ of the decoder
to produce good initial parameters, that is, parameters which can be quickly refined by taking a small number s of
steps of gradient descent [3]. While illustrated here for a single PQC problem, in practice FLIP is trained over several
PQCs sampled from a distribution of problems. After training it is used to initialize the circuits corresponding to new
problems drawn from the same or a similar distribution with, for instance, problems involving larger system sizes and
deeper circuits.
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FIG. 2. Overview of the results. The training performances of circuits initialized with FLIP (blue) are assessed based
on three distinct families of PQCs problems. In each case, converge of the corresponding costs (C) (averaged over
many problems) is reported as a function of the number of optimization iterations that are needed after initialization of
the circuits. (a) Synthetic problems of quantum state preparations which exhibit Barren plateaus. Initialization with
FLIP is compared to random initialization of the circuits (orange). (b) Training of QAOA circuits for solving max-cut
graph problems. FLIP is compared to random initialization (orange), initialization by means of heuristics inspired
from [9] (green) and also more involved initialization strategies [5] (red). (¢) Training of hardware-efficient circuits
for the ground state preparation of one—dimensional Fermi-Hubbard models. In any of the problems investigated,
the circuits initialized with FLIP are found to converge to better solutions and in fewer iterations than any other
initialization strategy investigated.
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Impact of Noise and Error Mitigation on Trainability of Variational Quantum Algorithms
(arXiv:2007.14384 [1] and arXiv:2109.01051 [2])

Samson Wang, Piotr Czarnik, Andrew Arrasmith, Marco Cerezo, Enrico Fontana, Kunal Sharma, Akira Sone, Lukasz Cincio,
and Patrick J. Coles

Variational Quantum Algorithms (VQAs) are a leading algorithmic approach in the Noisy Intermediate-
Scale (NISQ) era because they adapt to the constraints of NISQ devices. Specifically, VQAs prepare a cost
which takes the form of an expectation value of some measurement operator over a parameterized quantum
circuit, and minimize this cost by training the parameters in the circuit via a classical-quantum feedback loop
[3, 4]. The idea is to partition quantum and classical resources effectively by efficiently computing the cost on
a quantum computer whilst carrying out the parameter optimization classically. Different implementations
of this versatile framework have been proposed for a broad spectrum of problems ranging from dynamical
quantum simulation [5-15] to quantum machine learning [16-22] and beyond.

A. Noise-Induced Barren Plateaus

New challenges have recently been discovered for VQAs due to the effects of hardware noise [1, 23].
In Ref. [1] we investigate the impact of noise on the trainability of VQAs. We note that VQAs whose
expectation values are strongly affected by noise but which are still trainable (i.e. one can find the optimal
parameter set) can still be useful. This is due the fact that the goal of some VQAs is to extract the optimal
parameter set, and for algorithms where the goal is to obtain the optimal cost value one may use the optimal
parameters and approximate the optimal (noise-free) cost value by using error mitigation.

We consider ansatzes that consist of layers of general unitaries {U;(6;)}~, where each 6, = (O} } 1, is a
set of continuous parameters that are together optimized to minimize a noisy cost function C. We suppose
each unitary U;(0;) is parameterized as U;(6;) = [[,, e~ OmHim V- where Hj,, are Hermitian operators and
Wi denote unparametrized gates. We consider a noise model where local Pauli noise channels N act on
each qubit j before and after each unitary U;(6;). Finally, in this section we consider a class of local noise
models where the action of each Nj on a local Pauli operator o € {X,Y, Z} can be expressed as

M(0> =400, (1)

where —1 < ¢x, gy, gz < 1. We characterize the noise with a single parameter g = \/max{|qX|, lay |, laz|} <
1. Further, we denote the noisy cost function as C' = Tr[Op| where p is the noisy state obtained after
application of L layers parameterized unitaries interleaved with local noise (1), and O is some measurement
operator.

Result 1: We find upper bounds that show the concurrent exponential concentration of the cost
function around the corresponding value for the maximally mixed state, and exponential suppression of
partial derivatives:

|C —Tx[0]/2"| < D(4.n), (2)
10mC| < Glg,n) ¥V 1,m, (3)

where if L € Q(n) then D(q,n),G(q,n) € O(¢*") for some positive constant . These results hold under the
assumptions that that O can be decomposed into a polynomial number of Pauli strings, and each Hj,, that
generates the unitaries in the ansatz has bounded eigenvalues, which we remark are satisfied in most studied
settings. We refer to the effects of (2) and (3) as exponential cost concentration and NIBPs respectively.

NIBPs and cost concentration imply that noise severely impedes the training process of VQAs with linear
or superlinear depth circuits, as in such a setting one requires an exponential number of shots per optimization
step to resolve the cost landscape against finite sampling noise. Thus, we emphasize that at its core, these
effects present an exponential resolvability issue for the VQA cost landscape. In numerical implementations
we find that the training process is impeded with growing system size 1], and we corroborate our findings
with an implementation of the Hamiltonian Variational Ansatz on superconducting hardware. As with other
barren plateau effects |24, 25], this exponential scaling does not only arise for gradient-based optimizers but
also impacts gradient-free methods [26] and optimizers that use higher-order derivatives [27]. In addition,
NIBPs and cost concentration cannot be addressed by layer-wise training, correlating parameters and other
strategies [28-33], all of which can help avoid noise-free barren plateaus. Thus, these effects represent a
serious issue for VQA scalability, and could ultimately be a roadblock for near-term quantum advantage. It
is therefore crucial to investigate potential methods to mitigate them.



B. Unification of Error Mitigation Techniques and Impact on Trainability

Given the great success of error mitigation (EM) methods in suppressing the effects of hardware noise
on observable expectation values, it is natural to ask whether EM methods could address NIBPs. More
generally, one could simply ask: does it help to use error mitigation during the training process for VQAs?
We investigate this question the second part of our work, of which a detailed version can be found in Ref. [2].

We make two main contributions in this second part of our work. First, we consider a broad class of EM
strategies that includes as special cases Zero-Noise Extrapolation [12, 34-36], Virtual Distillation [37, 38|,
Probabilistic Error Cancellation [34, 35| and methods that implement a linear ansatz such as Clifford Data
Regression [39]. We unify and generalize such strategies by viewing them as the preparation of error-mitigated
cost values of the form

Cn(8) = > axausTr [X (a(6)%M @ [0)(0]F)] . (4)
(0(0),X,M,k)eT

That is, we consider linear combinations of expectation values of the form Tr[X (¢®M ® |0)(0|®*)] where o is
a n-qubit quantum state that in general can be prepared by a different circuit to that of the state of interest,
M is the number of copies of that state, |0)(0|®* are k clean ancillary qubits and X is a measurement
operator with bounded eigenvalues acting on the full Hilbert space. By considering linear combinations of
such expectation values, we account for the ability to post-process measurement results classically with a
linear map, for instance, as is the case with Probabilistic Error Cancellation.

Result 2: We find that under the noise model (1), there exists 5 > 0 and F' such that

|C(0) — F| € O(277), (5)

if the circuit depths that prepare o(@) satisfy L,@) € Q(n) for all ¢(8) in the construction (4), and all
ax m ik, M € O(poly(n)). That is, C,(0) exponentially concentrates on a parameter-independent fixed point
F' if circuit depths are linear or superlinear, and at most a polynomial number of state copies and shots are
consumed. By the triangle rule, (5) shows that any pair of cost values exponentially concentrates together.
Thus, this result implies that even after applying EM, at minimum an exponential number of shots (or
exponential number of state copies) are required to find a cost-minimizing optimization direction with both
gradient-free (such as simplex-based methods) and gradient-based optimization methods (such as using the
parameter shift rule).

Second, we consider the above discussed EM protocols in a non-asymptotic setting, and ask whether these
protocols can remedy some of the effects of cost concentration, even if exponential scaling is unavoidable.
To this end we define a class of quantities that we call relative resolvablilities which measure how much
error mitigation improves the resolvability of the landscape. We define the relative resolvability for two cost
function points corresponding to parameters 81 and 6, as

Newm(012) 7\ AC(6:2)

where Nyoisy(6012) and Nga(612) are the number of shots to resolve the noisy and error mitigated cost

X(012) = (6)

differences |C'(01) — C(03)| and |C,,,(01) — C.,(02)| respectively up to some fixed precision, and ~ is the error
mitigation cost [40]. In order to obtain state-independent results we also consider averaged versions of (6),
where the average is taken over all points in the cost landscape, or taken over a set of noisy states.

Result 3: We find that in many settings for Zero Noise Extrapolation and Virtual Distillation, X and
its averaged forms take value less than or equal to 1, under mild assumptions about the nature of the cost
function under some arbitrary noise model. Moreover, in certain settings it can be a very small number. This
implies that, surprisingly, in such settings the cost landscape is even harder to resolve after applying EM, and
trainability is further impaired. This is corroborated by our numerics for Virtual Distillation applied to a
Max-Cut problem. On the other hand, we find analytically in certain settings that Clifford Data Regression
(CDR) has a neutral effect on resolvability, which opens up the possibility that CDR can overall improve
trainability by remedying other corruptions to the cost landscape due to noise. Indeed, we find numerical
evidence of this, which points to the possibility of engineering novel EM methods to improve trainability.
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Scalable Bosonic Random Walk Networks for Graph
Learning

Shiv Shankar, Don Towsley University of Massachusetts

1. Summary

The success of deep learning has led to rapid progress in its usage in a wide range of appli-
cations. Similarly, in the last few years, quantum computation has experienced exponential
advancement (Steinbrecher et al., 2019). Especially so-called noisy intermediate-scale quan-
tum (NISQ) processors have witnessed major improvements in hardware. Photonic circuits
are a prime candidate for both the near-term NISQ and future quantum devices (Stein-
brecher et al., 2019). In this work, we explore applications of multi-particle bosonic walks
for information diffusion across graphs(Dernbach et al., 2019). Our model is based on
learning the operators that govern the dynamics of bosonic quantum random walkers on
graphs. We demonstrate the effectiveness of our method on a temperature prediction based
regression task.

2. Quantum walks on graphs

Quantum random walks (Aharonov et al., 2001) are the quantum parallel to their classical
counterparts, while a classical walker is modeled by a probability distribution over positions
in a graph, a quantum walker is described by a superposition over position states.
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Figure 1: Two particle quantum walk with
4 steps. (left) Joint probability distribution
with two indistinguishable bosons. (right)
Joint probability distribution with two dis-
tinguishable particles

Figure 2: Example temperature predictions
based on a graph constructed from the 8
nearest nodes

As a demonstration of how photonic or bosonic walks on graphs differs from the standard
quantum walk; we conducted a simulation of the walks on a one-dimensional lattice induced
Grover coin on (a) bosonic walkers (left) and b) standard quantum walkers(right). In Figure
1 depicts histogram plot of coincidence probabilities in the various output modes.



From the plot, it is clear that the photons show a non-independent behavior. The two
photonic walkers are found clustered in nearby parts of the graph and never far from each
other. At a high level, the walkers act as if they are entangled without actual entanglement.
It is a discrete walk-based analog of the celebrated Hong-Ou-Mandel effect (Hong et al.,
1987); and raises the possibility of performing a quantum search in a correlated manner.

3. Bosonic Walk Neural Network

A Bosonic Quantum Walker Network (QWB) incorporates bosonic quantum walk induced
kernels (Bai et al., 2017) into a graph neural network. Specifically a QWB uses feature
dependent coins to simulate bosonic walkers on a graph (Shankar and Towsley, 2020) and
then uses the induced statistics to form a graph diffusion operator(Atwood and Towsley,
2016). This operator is used to then aggregate information from across node level represen-
tations. All of these operations are differentiable, and hence one can use backpropagation
to compute the gradient of the loss with respect to all the model parameters (especially
parameters of the coin matrix) .

Scaling to Large Graphs

Exact simulation of multiparticle quantum walks scales exponentially in number of walkers.
As such the exact methods are difficult to use on graphs of size greater than 100. For
this purpose we use an approach based motifs (Peng et al., 2019). Motifs are higher-
order structures which can be thought of as capturing coarser properties of the graph. We
decompose large graph into smaller subunits based on motif set and run our model on
the subgraphs. Then we use motif-based attention to aggregate information across these
subgraphs. This allows our model to scale on graphs which would be otherwise infeasible.

4. Experiments and Conclusion

We ran experiments on the USTemp dataset (Williams

Mode‘l MA et al., 2006) which records daily high temperatures
Baseline 5.929 +0.068 from 409 locations across the United Sates in 2009.
Spectral 5.148 +0.126 We form a connected graph from the stations’ coordi-
DCNN(1) 5.503 +0.139 nates using 8 neighbors (Figure 2). The temperature
DCNN(2) 5.002+0.138 from each station on a given day is used to predict the
DCNN(3) 5.504+0.139 following day’s temperatures. In our experiments, we
QWNN(2) 4.383 +0.084 build a networks with single quantum walk layer and
QWB(2) 4.159 + 0.085 vary the walk length. In Table 7?7 we compare our
Table 1: The number in method against a diffusion convolution neural network

parantheses is used to denote (DCNN) , spectral graph network (Spectral) (Bruna

DCNN/QWNN/QWB layer with €6 al., 2014), and vanilla QWNN (Dernbach et al.,

hops/steps/steps respectively 2019). It is clear that the our bosonic walker QWB
model is the best performing model.

The QWB model demonstrates the power of bosonic quantum techniques for deep learn-
ing. Unlike simple QWNN, this approach allows for learning significantly more powerful
and complex graph diffusions.
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Abstract: We design generative learning algorithms for multivariate distributions based on a
variational ansatz that we christen as a ‘qopula’. We present theoretical arguments for exponential
advantage in our model's expressivity over classical models. The algorithms outperform the equivalent
classical generative learning algorithms when trained on lonQ quantum computers.

Modeling joint probability distributions is an important task in a wide variety of fields. A few
examples of its diverse applications include risk management [1], portfolio optimization [2], reliability
analysis [3], recommender systems [4], climate research [5], and medical imaging [6]. Traditionally,
single-parameter quantities such as the Pearson correlation or Spearman’s correlation have been used
to model dependence between variables. However, such measures are good for monotonic
dependence, which is frequently too simplistic for real data. Data, such as that from the financial
markets, engineering reliability studies, earth/atmospheric sciences tend to exhibit tail dependence,
which means they do not appear to have much correlation but exhibit dependence in extreme
deviations, as in the case of a black swan event [7].

Due to the reasons above, the relationship between random variables is now commonly
modeled using a dependence function between uniformly distributed variables, called a ‘copula’. Sklar’s
theorem [8] states that any multivariate joint distribution can be written in terms of univariate marginal
distributions and a copula that describes the dependence structure between the variables. Empirical
copulas (copulas from real data) tend to be a mixture of copulas and are commonly modeled using
parametric methods like maximum likelihood estimation [12]. As a rule, the more complex the copula
and the more completely it describes the data, the more computationally challenging it becomes to
extend it to higher dimensional data. More recently, generative models have been proposed for
statistical modeling that learn to generate data with the same statistics as a given training dataset,
effectively learning its distribution. The model can be used to output new samples that could plausibly
have belonged to the original dataset [13, 14].

Here we use lonQ quantum computers to train generative models called the Quantum Circuit
Born Machine (QCBM) [15, 16] and Quantum Generative Adversarial Network (QGAN) [17, 18] to learn
the joint distributions of two variables for historical data from the stock market: the daily return of AAPL
and MSFT between 2010-2018. Table | shows how the results of quantum training compare to classical
for the 2-dimensional 2-sample Kolmogorov-Smirnov (KS) test. As one can see, a classical parametric
model does a good job in modeling the copula, but generative models are able to do better. The result
from QGAN is consistent and outperforms classical GAN with similar number of parameters. The QCBM
performs slightly worse than the QGAN but comparable to the classical GAN.

We also note that for QGAN, our model converges regardless of initialization. For classical GAN,
only about 40% of our model instances are accepted by the 2D KS test with threshold 0.05. The rest
failed to learn and were rejected by the test. Another advantage is that we are able to train
QGAN/QCBM at a much faster learning rate and therefore conclude the training with much fewer
iterations than classical GAN. In classical GAN, the learning rate used is 0.0001 and model training
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concludes after 20000 iterations. Attempts to increase the learning rate failed due to non-convergence
in model training. In QGAN, model training concludes after 1000 iterations. In QCBM for 6 qubits, the

training converges to a good value for as little as 20 iterations.

Model

Dgksg (the smaller the better)

p-value (threshold 0.05)

Parametric model
Classical GAN
QGAN simulation

QCBM simulation

QGAN experiment, QPU cloud

0.0449
0.0363 - 0.0508
0.0320 - 0.0396

0.0352
0.0425 - 0.0520

0.117
0.0530 - 0.309
0.226 - 0.473

0.3570
0.0511 - 0.1717

QCBM experiment, QPU cloud 0.0373 - 0.0515 0.0548 - 0.3030
QCBM experiment, QPU Next Gen 0.0330 - 0.0510 0.0578 - 0.4465

Table 1: KS statistics and p-value of KS test across multiple models. The quantum models use N, =6
qubits.

Our quantum generative algorithms are based on a variational ansatz which we christen as a
‘gopula’. We show that every copula with density can be represented by a maximally entangled state.
Here we construct a quantum circuit that can prepare such maximally entangled states up to relative
phases, which we christen as a ‘gopula’ circuit. The quantum circuit for two random variables is shown
in Fig. 1.
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0y —{H] o, —RrZHRXHRZHERXX |—
: —RZHRX|{RZ
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Fig. 1: (a) The ‘qopula’ circuit for 2 random variables. The top (bottom) half of the circuit consists of
qubits that belong to the register which provides samples of the first (second) random variable. (b) The
ansatz for U corresponding to 3 qubits. All gates are parametrized by angles which are optimized during
the learning process. The structure can be repeated for multiple layers each with different parameters.
Here the 2-qubit RXX gates represent exp(ifX;X;) acting on qubits 7 and j, which can be executed as
CNOT(i, j) exp(i# X;)CNOT(i, j) using standard gates available on gate-model quantum computers. The
RZ and RX gates represent rotations around the Z and X axes.

Finally, we present theoretical arguments for exponential advantage in our model’s expressivity
over classical models based on communication and computational complexity arguments. We also
project our algorithms to start having commercial value when running on quantum hardware with 50
qubits.
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In quantum information processing, it is essential to quantify the performance of protocols by
using distinguishability measures. It is typically the case that there is an ideal state to prepare or an
ideal channel to simulate, but in practice, we can only realize approximations, due to experimental
error. Two commonly employed distinguishability measures for states are the trace distance [1, 2]
and the fidelity [3]. These distinguishability measures have generalizations to quantum channels,
in the form of the diamond distance [4] and the fidelity of channels [5], as well as to strategies
(sequences of channels), in the form of the strategy distance [6—8] and the fidelity of strategies [9].

Both the trace distance and the fidelity can be computed by means of semi-definite programming
[10], so that they can be estimated accurately with a run-time that is polynomial in the dimension
of the states. The same is true for the diamond distance [11], fidelity of channels [12, 13], the
strategy distance [6-8], and the fidelity of strategies [9]. While this method of estimating these
quantities is reasonable for states, channels, and strategies of small dimension, its computational
complexity actually increases exponentially with the number of qubits involved, due to the well
known fact that Hilbert-space dimension grows exponentially with the number of qubits.

In our paper, we provide several quantum algorithms for estimating these distinguishability
measures. Some of the algorithms rely on interaction with a quantum prover, in which case they
are not necessarily efficiently computable even on a quantum computer. In fact, the computational
hardness results of [14-16] lend credence to the belief that estimating these quantities reliably is
not generally possible in polynomial time on a quantum computer. However, as we show in our
paper, by replacing the quantum prover with a parameterized circuit (see [17, 18] for reviews of
variational algorithms), it is possible in some cases to estimate these quantities reliably. Already
in [19], it was shown that estimating the fidelity of two quantum states is possible in quantum
polynomial time when one of the states is low rank. See also [20—22] for variational algorithms that
estimate fidelity of states and [21, 23] for variational algorithms to estimate trace distance. It is
open to determine conditions under which precise estimation is possible for channel and strategy
distinguishability measures.

One of the other results of our paper is that the problem of estimating the fidelity between
a mixed state and a pure state is a BQP-complete promise problem (see [24, 25] for reviews of
quantum computational complexity theory). The aforementioned result follows by demonstrating
that there is an efficient quantum algorithm for this task and by showing a reduction from an
arbitrary BQP algorithm to one for this task. Thus, if we believe that there is a separation between
the computational power of classical and quantum computers, then this fidelity estimation problem
is one for which a quantum computer has an advantage.

In our paper, we provide details of the algorithms and results mentioned above. In particular,
our paper proceeds as follows:

1. We begin by establishing two quantum algorithms for estimating the fidelity of pure states,
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10.

11.

12.

one of which is based on a state overlap test and another that employs Bell state preparation
and measurement along with a controlled unitary.

. Next we generalize the first algorithm to estimate the fidelity of a pure state and a mixed

state, and we prove that the promise version of this problem is BQP-complete.

. We also establish several quantum algorithms for estimating the fidelity of two arbitrary

states. Algorithm 4 generalizes the second algorithm. Algorithm 5 generalizes the well
known swap test to the case of arbitrary states. Algorithm 6 is a variational algorithm that
employs Bell measurements, as a generalization of the approach in [26, 27] for pure states.
Algorithm 7 is another variational algorithm that attempts to simulate a fidelity-achieving
measurement, such as the Fuchs—Caves measurement [28], in order to estimate the fidelity.

We generalize Algorithm 4 to a quantum algorithm for estimating the fidelity of quantum
channels. This algorithm involves interaction with competing quantum provers, and inter-
estingly, its acceptance probability is directly related to the fidelity of channels, thus giving
the latter an operational meaning. Later, we replace the provers with parameterized circuits
and arrive at a method for estimating fidelity of channels.

. We also generalize the aforementioned approach in order to estimate the fidelity of strategies

(a strategy is a sequence of quantum channels, which generalizes the notion of a channel).

. Next we briefly discuss alternative methods for estimating the fidelity of channels and strate-

gies, based on the approaches for estimating the fidelity of states.

We introduce a method for estimating the maximum output fidelity of two quantum channels,
which has an application to generating a fixed point of a quantum channel.

. We also generalize the whole development above to the case of testing similarity of arbitrary

ensembles of states, channels, or strategies. We find that the acceptance probability of
the corresponding algorithms is related to the secrecy measure from [29], which can be
understood as a measure of similarity of the states in an ensemble. We then establish
generalizations of this measure for an ensemble of channels and an ensemble of strategies
and remark how this has applications in private quantum reading [30, 31].

. We then move on to estimating trace-distance-based measures, for states, channels, and

strategies. We stress that these various algorithms were already known, and our goal here
is to investigate their performance using a variational approach.

Next we provide two different but related algorithms for estimating the minimum trace
distance between two quantum channels. The related approaches employ competing provers.

We also generalize the whole development for trace-distance based algorithms to the case of
multiple states, channels, and strategies.

Finally, we discuss the results of numerical simulations of algorithms for estimating the
fidelity and trace distance of states, when using a noiseless simulator of a quantum computer
along with a variational approach with parameterized circuits. We find that, among all
algorithms for estimating the fidelity, Algorithm 6 that uses Bell measurement approach
converges the fastest with the smallest error.
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We study the storage capacity of quantum neural networks (QNNs), described by completely
positive trace preserving (CPTP) maps acting on a N-dimensional Hilbert space with n qubits. We
explore the number of stationary states that QNNs can store and the relative volume of CPTP by
applying the Gardner program.

The full article can be found here: https://iopscience.iop.org/article/10.1088,/2058-9565/ac070f .

I. INTRODUCTION

One crucial feature of NNs is their storage capacity for associative memory, that is, the number of patterns (stored
memories/attractors) the network has for a given number of neurons n. For attractor NNs (aNNs) of the Hopfield-
type [1], the relevant question is to determine how many stationary states, serving as stored memories, the network
may have. In standard Hopfield models, where neurons are Ising spins and attractors correspond to metastable states
resulting from two-body spin-spin interactions, the storage capacity scales ~ O(n). Recently, it has been shown that
if the Hopfield model is extended to p-body interactions, in the so-called Dense Associative Network model [2], the
capacity of storage can be highly increased, surpassing the linear O(n) behaviour and reaching O(n?~!/Inn), or even
beyond [3]. For feed-forward NNs, with the paradigmatic example of the perceptron [4], the corresponding question is
how many attractor input-output relations can be stored. The problem of the storage capacity and learning ability of
NNs was reformulated by the seminal contributions of Gardner [5, 6]. She provided the relative volume of NNs with a
desired set of patterns in the full space of NNs or, equivalently, the relative volume of feed-forward NNs with desired
input-output relations. Sharp shrinking of the relative volume to zero, heralds the phase transition corresponding to
an overloaded NN memory.

In the recent decades, quantum information science has demonstrated that information processing can be
significantly improved by exploiting quantum mechanics. Not surprisingly, both areas, ML. and quantum information
have merged together in the so-called quantum machine learning (QML) [7, 8]. Preliminary attempts to analyze
the storage capacity of QNNs were pursued in [9]. In a different approach, an exponential increase of the storage
capacity for a specific quantum search algorithm was demonstrated in [10]. More recently [11, 12], an increased
storage capacity was obtained by using a feed-forward interpretation of quantum Hopfield NNs. Similarly, qudits
have been studied in the context of quantum machine learning [13, 14]. Despite this progress, the storage capacity
of generic QNNs remains an open problem. In this work we address and solve this question by associating QNNs to
CPTP maps. We also analyze the learning capability of QNN’s by applying Gardner’s program to the quantum case
and estimate the relative volume of QNNs realizing the desired attractor input-output relations.

II. METHODS AND RESULTS

We associate QNNs with CPTP maps transforming initial states into final states in a finite (or infinite) time.
Attractors (stored memory /patterns) correspond to the stationary states of the map, i.e., A(p) = p. We identify the
storage capacity of QNNs (number of stored memories) with the maximal number of stationary points of CPTP maps
acting on density matrices in N-dimensional Hilbert spaces. We demonstrate that there exist a family of (non-trivial)
CPTP maps that have M = N linearly independent stationary pure states, and provide the generic expression of such

*maciej.lewenstein@icfo.eu
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FIG. 1: Color Online. Schematic representation of the action of CPTP maps A with N fixed states. Successive applications of
A :B(Ha) — B(Ha), brings arbitrary states p € B(Ha) to the set (depicted by red area) of stationary states of the map.

FIG. 2: Color online. Representation of the relative volume Vg(M) of CPTP maps acting as aQNN and storing M stationary
pure states. The volume shrinks as we increase the number of stationary states from Voprp = Vr(1) for M = 1, to Vg(N) for
M =N.

maps. These maps act as attractors in the space of states, i.e., the successive application of the map brings an arbitrary
state to the set of its fixed points, see Fig. 1. We interpret this class of maps as attractors QNNs (aQNNs). Further,
we estimate the relative volume of CPTP maps that have exactly 1 < M < N pure stationary states. This calculation
corresponds to a quantum version of the Gardner program. We show that, in the limit of large N, the relative volume
in the space of CPTP maps capable to store M patterns decreases very slowly with M as exp(—M?/(N* - N?)). Our
results signal quantum advantage meaning that CPTP maps acting on n-qubit states may reach a storage capacity of
O(2™), surpassing the storage capacity of classical neural networks, including Dense Associative Networks. We derive
analogous results for bilayer QNNs and their respective attractor input-output relations. Here, we do not restrict
the CPTP maps by any notion of k-locality, which may reduce the number of stored states. Finally, we discuss the
extension of our results to generic feed-forward NN and provide the details in the Appendix.

III. CONCLUSIONS AND OUTLOOK

We have demonstrated, using CPTP maps acting on a Hilbert space of dimension NV, that aQNN’s can store up to N
linear independent pure states. For n qubits, quantum channels reach thus the capacity 27, clearly outperforming the
storage capacity of standard classical neural networks ~ O(n), where n is the number of binary neurons, or the best
Dense Associative Networks whose storage capacity ~ 0(2(”/ 2)). Applying Gardner’s program to the quantum case,
we have related the learning capability of aQNN’s to the relative volume Vz(M) of CPTP maps with M stationary
pure states, and show that this volume decreases very slowly with the number of stored patterns M. Finally, we
have applied our procedure also to feed-forward QNN with different input and output spaces. Our results are simple
and mathematically rigorous. Furthermore, they open the path to study the relation between the storage capacity of
QNNs and the quantum features, such as coherence and entanglement, of the desired attractor input-output relations.
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Abstract

We investigate quantum circuits for learning functions over graphs, proposing a unifying framework of
Equivariant Quantum Graph Circuits subsuming earlier work as special cases and discuss other possible
subclasses. We prove that these circuits are universal approximators for functions over the graph domain
and provide experimental evidence.

Background

Graph neural networks (GNNs) are deep neural networks that are used to predict properties of nodes
or entire graphs in a way that respects their structural invariances: the ordering of nodes and edges in
the representation should not matter [5, 3]. GNNs achieved impressive results in graph representation
learning on a wide range of benchmarks, and there has also been significant work on the theoretical
capabilities of such models. This includes results showing that the expressive power of a broad class of
popular GNN models is bounded by the 1-dimensional Weisfeiler Leman heuristic (for graph isomorphism
testing), and, as a result, some pairs of non-isomorphic graphs always result in the same predictions with
these methods (see, e.g., [2, 11, 6]). Recent work has focused on alleviating this limitation at the cost of
more computational power [8, 6] or by introducing randomisation [1, 9].

Meanwhile, there have been a number of proposals for quantum analogues of GNNs, typically using
sets of qubits to represent information about each node, and performing multi-node entangling operations
according to the structure of the graph in question [10, 12]. This lets us make use of the exponentially large
Hilbert space of the joint system to model complex interactions via entanglement between the node states.
Such methods have been supported by empirical data from small-scale experiments, particularly when
applied to modelling quantum systems, but to date there has been no clarity on how their expressivity
compares to classical approaches.

Equivariant Quantum Graph Circuits

We propose a unifying framework of Equivariant Quantum Graph Circuits (EQGCs) to formalise the
notion of quantum circuits that respect the invariances of the graph domain, show that it subsumes
existing methods as special subclasses, and prove powerful results about the expressive power of such
models, applying to several of these classes.

Similarly to Verdon et al. [10] and Zheng et al. [12], we represent nodes in a quantum circuit as a joint
system given by the tensor product of subsystems for each node. We set the initial state to be a product
of node states encoding each node’s features: |¢)) = @, |v;) € C*". We only make measurements at
the end of the process, so we wish to learn unitary transformations mapping this input to a useful output
state where we can measure each node. This unitary may depend on the adjacency matrix, but the
ordering of nodes and edges should not matter. This is formalised in the following definition:

Definition 1. An EQGC is an arbitrary function C(-) mapping an adjacency matrix A € B"*" to a
unitary C(A) € C*"**" for any n that behaves equivariantly in the following sense:

For any permutation p over n elements, consider its usual representation by P € B"*™ as well as a
larger matrix P € B*"*5" that reorders the tensor product, mapping any |v1) |vg) ... |v,) with |v;) € C*
to |vp1)) [Vp(2)) - - - [Up(n))- Then C must satisfy:

c(A) = PTc(PTAP)P (1)
*This is an extended abstract of the results first presented as part of the thesis of the first author [7], available here.
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Figure 1: Distribution of the number of measured |1)s out of six qubits when applying a restricted
EDU-QGC over two 1-WL indistinguishable graphs as a function of the model parameter c.

We consider models for graph classification and regression by encoding node features as a product
state, applying an EQGC, measuring all nodes and classically aggregating the results to provide predic-
tions.

This definition is very general due to C being an arbitrary function of A. In principle, this allows
the unitaries given for non-isomorphic graphs to be chosen completely independently. While this gives
us a flexible framework to discuss possible approaches, we clearly need to choose some further restricted
subclass if we hope to inductively generalise to unseen graphs, and to represent models with a finite
number of parameters. We therefore propose two subclasses: Fquiariant Hamiltonian Quantum Graph
Clircuits (EH-QGC) closely related to the Quantum Graph Convolutional Neural Networks proposed by
Verdon et al. and Fquivariantly Diagonalisable Unitary Quantum Graph Networks (EDU-QGC) that can
be seen as a restriction of the work of Zheng et al. that ensures Equation 1 is respected [12, 10]. We
prove that EDU-QGCs are contained in EH-QGCs.

Overview of the Results

We prove powerful results about the expressivity of our quantum models similar to recent work on
randomisation in classical GNNs [1, 9]. Note that unlike in the classical case, where this randomisation
had to be explicitly added to extend model capacity, we can do this without modifying our model definition
in the quantum case — our results apply to EDU-QGCs and their superclasses.

We first show that EDU-QGCs can simulate a large and popular class of classical graph neural
networks called message-passing neural networks (MPNNs) [4]:

Theorem 1. EDU-QGCs can represent any MPNN with sum aggregation. For an MPNN with k layers
with an embedding dimensionality of w, with a fized-point real representation of b bits per real number,
this EDU-QGC needs (2k 4+ 1)wb qubits per node.

Building on this result, and establishing a correspondence between randomised MPNNs and quantum
circuits, we show universality over bounded-size graphs:

Theorem 2. For any real function f defined over graphs up to size n, and any € > 0, there is an
EDU-QGC that calculates f(G) with probability (1 — €) for any graph G.

To empirically verify our findings, we consider a pair of graphs, known to be indistinguishable by
MPNNSs, apply certain restricted EDU-QGCs with a single parameter a to these graphs, and compare
the probability of possible measurements. As shown in Figure 1, the distributions of outcomes do differ,
particularly around o ~ +m.

Although our constructions do not show quantum advantage over classical models with randomisation,
since the specific constructions we give could be simply executed classically, our results serve as important
steps towards a better theoretical understanding of quantum methods. Additionally, through the EQGC
framework, we provide a unifying perspective on possible quantum architectures that can help inform
future work. If we can find a class of useful functions that are significantly more costly to learn classically
than in the quantum setting, perhaps related to the behaviour of molecules or other quantum systems,
that would be very relevant for applications and a good candidate for practical quantum advantage.
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We substantially speed up quantum machine learning of large datasets via randomized
measurements of quantum kernels. We identify a high-dimensional data encoding that is
characterized by quantum geometric measures. Our technique successfully classifies hand-
written images using IBM quantum computers with parallel processing and a complementary

noise mitigation method.

Quantum computers promise to enhance machine learning for practical applications [1, 2].
Quantum machine learning for real-world data has to handle extensive amounts of high-dimensional
data. However, conventional methods for measuring quantum kernels are impractical for large
datasets as they scale with the square of the dataset size. Here, we measure quantum kernels
using randomized measurements to gain a quadratic speedup in quantum computation time and
quickly process large datasets [3]. Further, we efficiently encode high-dimensional data into quan-
tum computers with the number of features scaling linearly with the circuit depth. The encoding
is characterized by the quantum Fisher information metric [4] and is related to the radial basis
function kernel [5, 6]. We demonstrate the advantages of our methods by classifying images of
handwritten digits with the IBM quantum computer. To achieve further speedups we distribute
the quantum computational tasks between different quantum computers. Our approach is excep-
tionally robust to noise via a complementary error mitigation scheme. Using currently available
quantum computers [7], the MNIST database can be processed within 220 hours instead of 10 years

which opens up industrial applications of quantum machine learning.
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Abstract

We analyze the spectral properties of quantum kernels and show how they
determine the potential for a quantum advantage in supervised machine learning. We
show a no-free lunch theorem and furthermore that kernel evaluations might block
the road to quantum advantages, similarly to Barren Plateaus in QNNs.

1 Extended Abstract

In recent years, much attention has been dedicated to studies of how small and noisy
quantum devices [1] could be used for near term applications to showcase the power of
quantum computers. Besides fundamental demonstrations [2], potential applications that
have been discussed are in quantum chemistry [3], discrete optimization [4] and machine
learning (ML) [5-12].

Initiated by the seminal HHL algorithm [13], early work in quantum machine learning
(QML) was focused on speeding up linear algebra subroutines, commonly used in ML,
offering the perspective of a runtime logarithmic in the problem size [14-17].

Rather than speeding up linear algebra subroutines, we focus on more recent suggestions
that use a quantum device to define and implement the function class and do the
optimization on a classical computer. There are two ways to that: the first are so-called
Quantum Neural Networks (QNN) or parametrized quantum circuits [5-7| which can
be trained via gradient based optimization [5, 18-22|. The second approach is to use a
predefined way of encoding the data in the quantum system and defining a quantum kernel
as the inner product of two quantum states [7-11]. We here focus on quantum kernels,
which allow for convex problems and thus lend themselves more readily to theoretical
analysis.

Only recently first steps where taken to theoretically understand when quantum
kernels are advantageous [10, 12, 23|. In this work, we relate the discussion of quantum
advantages to the classical concept of inductive bias. The no free lunch theorem informally
states that no learning algorithm can outperform other algorithms on all problems. This

*A preprint is available: arXiv:2106.03747 and the work is accepted to NeurIPS 2021.
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Figure 1: Quantum advantage via inductive bias: (a) Data generating quantum
circuit f(z) = Tr [p¥ (z)(M ®id)] = Tr [p¥ (z)M]. (b) The full quantum kernel k(z,2’) =
Tr [pY (z)p" (2')] is too general and cannot learn f efficiently. (c) The biased quantum
kernel g(z,2') = Tr [pV (2)p" (2/)] meaningfully constrains the function space and allows
to learn f with little data. However, estimating ¢ to sufficient precision generally requires
exponentially many measurements. This blocks the road to an easy quantum advantage.

implies that an algorithm that performs well on one type of problem necessarily performs
poorly on other problems. A standard inductive bias in ML is to prefer functions that are
continuous. An algorithm with that bias, however, will then struggle to learn functions
that are discontinuous. For a QML model to have an edge over classical ML models,
we could thus ensure that it is equipped with an inductive bias that cannot be encoded
(efficiently) with a classical machine. If a given dataset fits this inductive bias, the QML
model will outperform any classical algorithm. For kernel methods, the qualitative concept
of inductive bias can be formalized by analyzing the spectrum of the kernel and relating
it to the target function [24-29|.

Our main contribution is the analysis
of the inductive bias of quantum machine
learning models based on the spectral prop-
erties of quantum kernels. First, we show 1071+

that quantum kernel methods will fail to gm,z —\0— Z::tn

generalize as soon as the data embedding B P

into the quantum Hilbert space is too ex- %w ’ Kror train

pressive. Then we note that projecting §uwo: ¢ —#—————At—4+—4 :W"fttr:frt]
=

the quantum kernel appropriately allows to Gw test

construct inductive biases that are hard to

create classically (Figure 1). However, our : ; ; j : : ;

second Theorem also implies that estimat- Number of Qubits d

ing the biased kernel requires exponential

measurements, a phenomenon reminiscent Figure 2: The biased kernel ¢, equipped with

of the Barren plateaus observed in quantum prior knowledge, easily learns the function

neural networks. Finally we show experi- for arbitrary number of qubits and achieves

ments supporting our main claims. optimal mean squared error (MSE). Models
that are ignorant to the structure of f fail to
learn the function.
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The quantum Hilbert space can be used as a quantum-enhanced feature space in machine
learning (ML) via the quantum feature map to encode classical data into quantum states.
We prove the ability to approximate any continuous function with optimal approximation
rate via quantum ML models in typical quantum feature maps.

The expectation in utilizing advantages of quantum effects to surpass the classical ML techniques
has led to the advent of quantum machine learning (QML) research [1]. QML is currently benefiting
from the arrival of noisy intermediate-scale quantum (NISQ) devices that may include a few tens
to hundreds of qubits with no error correction capability [2, 3]. One of motivations for QML is
that quantum systems can explore a larger class of features than can classical systems. Hence,
the quantum Hilbert space can be used as a quantum-enhanced feature space for classical data,
which can be efficiently manipulated from NISQ devices. Here, the input data is encoded in
a quantum state via a quantum feature map, a nonlinear feature map that maps data to the
quantum Hilbert space (Fig. 1). A quantum computer can analyse the input data in this feature
space, where a classifier, such as a linear support vector machine (SVM), can gain power in finding
a hyperplane to separate the data. The quantum feature map is first proposed and implemented as
a fixed quantum circuit, followed by a variational circuit that adapts the measurement basis with
trainable parameters [4, 5]. Quantum feature maps underscore the QML advantage; there may be
a provable exponential speed-up due to the classical intractability of generating correlations for
a particular learning problem [6]. Still, little is known about the relation between the classical
intractability of quantum feature maps and the generalization learning performance.
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FIG. 1. A quantum feature framework consists of a feature map circuit Uy 5 that realizes ¥(x) to map the
classical data © € X to a quantum state in the Hilbert space and a quantum circuit W to adapt the mea-
surement basis. The combination of Uy ) and W can be repeated as a sequence with different parameters.
This framework has the universal approximation property if the linear combining of measurement results
can approximate any continuous function g : X — R.

* These authors contributed equally to this work.
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We focus to answer whether a QML model based on a quantum feature map can obtain expres-
sivity that is as powerful as, or is more powerful than, classical ML schemes. This can be investi-
gated from the perspective of the universal approximation property (UAP) and the classification
capability, which have been extensively explored in feedforward classical neural networks [7, 8].
Here, UAP refers to the ability to approximate any continuous real function on a dataset X’. The
classification capability implies that the function constructed from quantum feature maps can form
disjoint decision regions [9]. Quantum neural networks, which employ qubits as quantum percep-
trons with nonlinear excitation responses [10], can be emulated on a photonic quantum computer
to obtain UAP [11]. In Ref. [12], the expressivity of a quantum model with a variational circuit
is characterized in terms of a partial Fourier series in the data. However, the study of UAP and
classification capability of QML models with quantum feature maps still remains challenging.

In this research, we present a provable UAP and classification capability in two typical sce-
narios when setting the quantum feature map. Here, we combine quantum feature maps with an
appropriate possible set of K observables O1,Os, ..., Ok, which are Hermitian operators applied
to the output state |¥(x)) of the quantum circuit. If we measure O;, we can obtain the expec-
tation value of this observable and consider it as the basis function ¢;(x) = (V(x)|O;|¥(x)) =
Tr[O; |¥(x)) (U(x)|]. We focus on the UAP of functions f : X — R, where each f is the linear
combination of the basis functions v; (Fig. 1). In the first scenario, which is defined as the parallel
scenario, the quantum feature map is a tensor product of multiple quantum circuits; each circuit
acts on a subsystem, and the number of qubits can be set freely. In the second scenario, which
is defined as the sequential scenario, the quantum feature map is the repetition of a simple fixed
quantum circuit, and the number of qubits is fixed. We obtain the UAP in the first scenario and
prove the UAP for the second in single-qubit circuits of the finite input space.

We further describe relative goodness or badness in a universal approximation via the approx-
imation rate. This rate refers to the speed at which the approximation error decreases when the
parameters, such as the number of qubits N and the input dimension d, are increased. The approx-
imation rate strongly depends on the nature of the target function g : X — R to be approximated
and the type of the input set X. If X = [0,1]? and the target function g is Lipschitz continuous
with respect to the Euclidean norm, we can construct an explicit form of the approximator to g in
the parallel scenario by N qubits with the error ¢ = O(d7/ 6y—1/ 3). Furthermore, we can achieve
an approximation error with a better approximation rate in terms of N as ¢ = O(d3/ N ’1). It
implies that O(d3/ 25’1) qubits are enough to obtain an approximation with e-error. More detailed
proofs for our results can be found in Ref. [13].

The approximation rate provides a method to compare the asymptotic universality between
our quantum feature framework and the classical neural networks. The number of observables
K corresponds with the number of parameters in the classical neural networks. In the parallel
scenario, we can write our best approximation error as ¢ = O(K -1/ 4) if we fix d and focus on
K. Interestingly, this is also the best approximation when using a classical neural network to
approximate a Lipschitz continuous function [14, 15]. This result suggests a strong guarantee that
the QML models in quantum-enhanced feature spaces can exhibit at least the same expressivity
as the classical ML models. Furthermore, our work enables an important theoretical analysis to
ensure that ML algorithms based on quantum feature maps can handle a broad class of ML tasks.

K.N. and Q.H.T. were supported by MEXT Quantum Leap Flagship Program (MEXT Q-
LEAP) Grant Nos. JPMXS0118067394 and JPMXS0120319794.
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