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We show that under reasonable trainability assumptions, there exists an unconditional super-
polynomial separation in expressivity between commonly used neural sequence models and simple
quantum extensions of them. We are able to explicitly show that the sources of these separations
are quantum complementarity and contextuality.

I. BACKGROUND

The use of machine learning for language translation has undergone a revolution in recent years. Historically,
Bayesian networks [1] have been used for the task of language translation—most famously, hidden Markov models
(HMMs) [2]. Though HMMs can in theory encode any sequential distribution with enough hidden units, in practice
they are very inefficient. Specifically, as HMMs allow for generic transition functions, in general one can utilize a
latent space only logarithmic in the size of the input for training and inference to be efficient [3].

More recently, neural sequence models such as recurrent neural networks (RNNs) [4–6] and Transformers [7] were
found to be naturally much more memory efficient than HMMs by further restricting the structure of the network.
Instead of allowing for generic transition functions, neural sequence models are efficiently expressible as compositions
of linear transformations with a fixed nonlinearity—more generally, these models are Lipschitz continuous. That is,
these models are differentiable almost everywhere, and almost everywhere have bounded derivative. Though these
models are technically more restricted (given fixed numerical precision) when compared with HMMs, the efficiency of
neural sequence models allow them to outperform HMMs on most real world sequence modeling tasks.

Simultaneously, quantum models have been studied as a possible extension of classical machine learning models, as
quantum systems are believed to produce probability distributions difficult to simulate classically [8, 9]. In previous
work, the authors showed an unconditional, superpolynomial advantage in the expressivity of a class of quantum
HMMs over classical HMMs in translation tasks [10]. However, the restricted memory efficiency of HMMs was crucial
for this separation, and thus the methods used do not extend to a superpolynomial separation on the more efficient
neural network models. It was therefore unclear whether a quantum expressivity advantage held over state of the art
classical methods for sequence modeling.

II. RESULTS AND IMPLICATIONS

In this work, we take advantage of the restricted structure of seq2seq models [11] (i.e. neural sequence models based
on vanilla RNNs [4], LSTMs [5], etc.) and Transformers [7] to show an unconditional superpolynomial expressivity
separation between them and a certain quantum extension of them. More precisely, we show that there are translation
tasks that can be performed by the quantum enhanced models to zero error in perplexity, that any polynomial-
equivalently sized classical seq2seq or Transformer model cannot perform to better than infinite error in perplexity.
We also explicitly show that, even without guarantees on Lipschitz continuity, our previous results can be extended
to any neural sequence-to-sequence model to give an unconditional polynomial expressivity separation.

Similar to our previous results on HMMs [10], the simplicity of the basis-enhanced models allows us to directly
track the origins of the quantum advantage. In the case of seq2seq models, we show that the origin is quantum
contextuality; for Transformers, quantum complementarity. The quantum advantage therefore in some sense stems
from using quantum resources to combat the inherent weaknesses of the underlying classical models. Classical seq2seq
models struggle with representing the context of words in long sequences [5], and Transformer models (even with a
positional encoding) are constrained to be approximately permutation invariant in order to efficiently capture long-
range correlations [7].
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First, we define the quantum extension we use to show this separation. We extend the notion of basis-enhanced
Bayesian networks [10] to neural networks:

Definition 1 (Basis-enhanced neural networks). A quantum circuit is a basis-enhanced neural network if it extends
an implementation of a neural function with measurement allowed in any local basis.

Note that this is a very simple (and nonuniversal) quantum generalization—given an implementation of a classical
neural network on a quantum computer, our model is only extended by allowing for a final layer of single qubit
rotations. We then consider the sequence modeling task:

Definition 2 (Stabilizer sequence translation, informal). Let s, s′ each be binary representations of a sequence of
k Pauli matrices and ±1-valued measurement outcomes on n qubits. The stabilizer sequence translation task is the
modeling of the conditional distribution p (s′ | s), which is uniform over all correct translations s′ of s. A translation
s′ of s is considered correct if the sequential measurement scenario (s, s′) when beginning in the all zero state is
consistent with quantum mechanics.

This sequence modeling task is just a classical description of a stabilizer measurement scenario. Due to the relative
simplicity in which quantum computers can sample from this distribution—simply simulate the measurement scenario
and then sample—it is straightforward to show that the task given in Definition 2 can be modeled completely by
basis-enhanced neural networks. That is:

Theorem 1 (Basis-enhanced neural networks can stabilizer sequence translate, informal). Basis-enhanced seq2seq
models with O (n)-dimensional latent spaces can perform the translation task of Definition 2 to zero error.

Using techniques from [10], it is also fairly straightforward to show that no (autoregressive) classical neural sequence
model with a o

(
n2

)
-dimensional latent space can perform this task to a finite perplexity; intuitively, this stems from

a memory lower bound on the classical simulation of stabilizer measurements on n qubits [12]. However, it is less
straightforward to show—and what we spend the majority of our work showing—that this can be extended to a
superpolynomial advantage for Lipschitz continuous (i.e. efficiently trainable) neural sequence models. Indeed, we
show this separation for both seq2seq and Transformer models, with the only constraints being Lipschitz continuity of
the models, the models having fixed numerical precision, and a simple trainability assumption on the seq2seq model.

Theorem 2 (Neural networks cannot stabilizer sequence translate, informal). Neither seq2seq nor Transformer models
(that are Lipschitz continuous and at fixed precision) with O (poly (n))-dimensional latent spaces can perform the
translation task of Definition 2 to finite error in forward or backward perplexity.

Our proof techniques vary for the two classes of models. For seq2seq models, we show that Lipschitz continuity
greatly constrains the amount of information flow through the model. This constrained information flow makes
it provably difficult for seq2seq models to learn the measurement context of an observable in the translation task
we consider, leading to incorrect measurement outcomes and thus an inability to perform the translation task of
Definition 2 to finite error in perplexity. For Transformers, we show that the approximate permutation symmetry of
certain layers of the model—an approximate symmetry that is necessary for the model to efficiently capture long-range
correlations [13]—makes certain sequences difficult for the model to distinguish. In particular, we show that there
must exist two measurement sequences describing orthogonal states that the model struggles to differentiate, leading
to incorrect measurement outcomes as in the seq2seq case.

Our results are the first to show an unconditional superpolynomial expressivity advantage between state of the art
neural networks and a quantum extension of them. Furthermore, we show that this separation arises from very basic
quantum phenomena—contextuality and complementarity—and that only simple quantum models are necessary for
the separation. Importantly, this provides an avenue for demonstrating these advantages experimentally; as generic
quantum models are expected to suffer from difficulties in training due to features such as barren plateaus [14] in
the training landscape, simpler and more physically motivated quantum models are more promising to implement.
Finally, certain restricted classes of basis-enhanced models are classically simulable, giving physical motivation from
quantum contextuality and complementarity that may help in designing improved classical neural networks in the
future.
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Abstract

Hybrid quantum-classical machine learning workflows involving quantum kernel matrices incur data
transfer costs scaling quadratically with the data set size. This work shows matrix completion algorithms
mitigate these costs while being robust to shot noise. The relationship between properties of quantum
circuits and completability of quantum kernel matrices is studied.

Enhancing classical machine learning algorithms through quantum kernels (similarity measures) is a
rapidly-growing research area in quantum machine learning [7, 9, 10, 8]. Given a data set {dj}Nj=1, with

dj ∈ RM , the corresponding quantum kernel matrix K has elements Klm = Tr(ρ(dl)ρ(dm)), where ρ(dj) =
U †(dj)ρ0U(dj) for a parameterized quantum circuit (PQC) U(z) and fiducial state ρ0. K is positive semi-
definite (PSD) (i.e., K ≥ 0), and can be used in various kernel-based classical machine learning algorithms
such as Kernel Ridge Regression, Support Vector Regression, and Gaussian Process Regression.

One highly practical (yet under-appreciated) aspect of utilizing quantum kernels in such algorithms is
that most workflows involve acquiring new data points, necessitating an extension of the quantum kernel
matrix. When k new data points are acquired, O(k(N +k)) new kernel values must be calculated. The time
required to extend K in this way may exceed timescales relevant for using the machine learning algorithm.

Suppose that instead of calculating all the new elements of K, only some are. Then, classical matrix
completion [2] can be used to fill in the remainder, thereby reducing the number of new elements that need
to be computed every time a new batch of data is acquired. To formalize this, suppose K is an N × N
quantum kernel matrix whose known elements are indexed by a set S: the tuple (l,m) ∈ S if, and only if,
Klm is known. Completing K means estimating Kl′m′ ∀ (l′,m′) /∈ S, yielding an estimate K̂ of K.

The completion of K with respect to S is non-unique, and therefore is cast as an optimization problem.
We choose a completion based on maximizing log(det(K̂)), as it makes the fewest assumptions about K itself.
The choice of the completion algorithm is guided by practical considerations of real-world workflows. First,
the algorithm must run “offline” with respect to the quantum computer, meaning the elements Klm ∀ (l,m) ∈
S must be calculated upfront. This mitigates increased costs inherent in adaptive, “online” completions.
Second, the algorithm should deterministically select S to minimize the amount of data transfer, without
compromising completion accuracy.

A suite of PSD matrix completion techniques based on graph theory satisfy these desiderata [3]. One of
them, based on inducing a block-diagonal sparsity pattern [5] on the known elements, emerges as the best
candidate. In this sparsity pattern, the known elements of K form a block-diagonal pattern, with overlap
u ≥ 0 between the blocks. If u ≥ r, where r = rank(K), then K can be completed with zero error [4].

We numerically study completing quantum kernel matrices using the above algorithm and sparsity pat-
tern. To do so, we generate realizations of quantum kernel matrices (using the PQC denoted “Circuit 3” in
[6]) using a uniformly distributed data set to demonstrate the extension of a 450 × 450 matrix to include
50 new items. The 500 × 500 incomplete matrix has a block-diagonal sparsity pattern consisting of two
blocks. The first is 450× 450 (the original matrix), and the second has a size which is varied from 50× 50
to 500 × 500. The overlap u between them is thus in the range 0 ≤ u ≤ 450. For each realization, we
generate an estimate K̂, and quantify the estimation error as Error = (‖KS̄ − K̂S̄‖F )/‖KS̄‖F , where ‖.‖F is
the Frobenius norm, and S̄ is the complement of S with respect to the indices of K.
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(a) Noise-free case. (b) Noisy (shot noise) case.

Figure 1: Completing quantum kernel matrices using classical matrix completion techniques. W denotes the width
of the PQC, and L the number of repetitions of its base template. Dotted lines denote the rank r of the noise-free matrix.
Figure 1a shows completion error goes to 0 once the overlap between the blocks u exceeds r, as predicted by [4]. Figure
1b shows the effect of finite-sampling (“shot”) noise (R) on completion error, here L=1. In both figures, the error shading
represents the minimum and maximum error from five realizations.

(a) Circuit expressibility does not predict effective rank. (b) Circuit width predicts average effective rank.

Figure 2: Relationship between properties of PQCs and normalized effective rank. For each of the 19 circuits in [6],
we generate quantum kernel matrices of varying sizes (N) and compute the effective rank, normalized to N . Figure 2a shows
circuit expressibility [6] does not seem to be predictive of normalized effective rank, whereas Figure 2b shows a relationship
exists between normalized effective rank and circuit width.

Our first set of findings, shown in Figure 1, are (a) noise-free quantum kernel matrices can successfully
be completed when u ≥ r (Figure 1a), and (b) completion error degrades gracefully in the presence of
finite-sampling (“shot”) noise (Figure 1b).

Our second set of findings, shown in Figure 2, is that different properties of PQCs may be useful for
predicting a particular property of quantum kernel matrices; namely, their effective rank. The effective
rank of a matrix [1] is a continuous measure of matrix rank, and also bounds the matrix rank from below.
Predicting this number a priori would be useful for estimating completion error given a PQC. Figure 2a shows
that circuit expressibility [6] does not seem to be predictive of the effective rank (normalized to matrix size)
of quantum kernel matrices. However, Figure 2b shows circuit width does provide some predictive capability.

In sum, this work shows a graph-theory-based matrix completion algorithm can successfully complete
quantum kernel matrices, and confirms completion error behaves as predicted. However, the quantum kernel
matrices used here were generated from a random, unstructured data set, which is not wholly reflective of
the structured data expected in a real-world data set. This raises an important question - how does the
structure of a data set, through the action of a PQC, affect the (effective) rank of the quantum kernel matrix
it generates? We will answer this question by applying the techniques presented here to such a data set.
Further, we plan to train a kernel-based regression model with completed quantum kernel matrices to test
the stability of the model under matrix completion.
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We introduce a (classical) algorithm for extracting geodesic distances on sampled manifolds
that relies on simulation of quantum dynamics on a graph embedding of the sampled data.
Our approach exploits classic results in the quantum-classical correspondence, and reveals
interesting connections between the discretization provided by sampling and quantization.

Physical processes have inspired information processing algorithms throughout the history of
computing. Perhaps the most prominent examples are sampling algorithms inspired by statistical
mechanics such as the Metropolis-Hastings algorithm. More recently, random walks and diffusion
have provided inspiration for techniques that learn the geometry of data sets and perform nonlinear
dimensionality reduction to reduce the complexity of high-dimensional datasets. This task is
referred to as manifold learning, and has become a cornerstone task in the unsupervised learning
of datasets. Underlying manifold learning is the manifold hypothesis, which states that most real-
world high-dimensional datasets, especially those originating from physical systems constrained by
physical laws, are actually constrained to lower dimensional manifolds.

We introduce an algorithm for extracting geodesic distances on sampled manifolds that relies
on properties of quantum dynamics and the quantum-classical correspondence. It forms a basis for
techniques to learn the manifold from which a dataset is sampled, and subsequently for nonlinear
dimensional reduction of high-dimensional datasets. The ingredients to our approach are (i) the
approximation of a unitary time evolution operator (propagator) for a quantization of Hamiltonian
dynamics on the data manifold, (ii) propagation of localized coherent states that approximate
classical point particle trajectories, (iii) a rescaling of the diffusion approximation parameter to
support the quantized dynamics. Quantization of the dynamics linearizes the classically non-linear
problem of solving for geodesics on a manifold, and moreover, our construction allows us to use
results in semiclassical analysis to prove strong asymptotic connections between the dynamics
induced by unitary propagator and geodesic distances on the underlying manifold.

The key steps of quantum-inspired manifold learning are shown in Fig. 1(a). The input to the
procedure is a point cloud dataset: V = {v1, v2, ..., vN}, which are N samples from an underlying
compact, smooth, and boundaryless Riemannian manifold M with dimension ν and metric tensor
gij . The manifold is assumed to be isometrically embedded in Rn with n > ν and each data
point vℓ ∈ Rn specifies a point in these extrinsic coordinates. Then step 1 in the approach is
to construct a data-driven approximation of a unitary time propagator for a quantum system
whose configuration space is the data manifold. This is achieved by exploiting established results
on convergence of normalized graph Laplacians based on sampled data to the Laplace-Beltrami
operator on a data manifold. Then in step 2, we propagate data-driven approximations of minimum
uncertainty coherent states on the manifold using the propagator constructed in step 1. We prove
that as these states are propagated for short times, they remain localized along the geodesic flow
on the manifold using a classic result from quantum-classical correspondence, Egorov’s theorem,
which is graphically summarized in Fig. 1(b). This enables extraction of geodesic distances from
the propagated states in step 3, which is used as input for various applications (ovals on the right).

Our constructions and approach to manifold learning reveal an interesting connection between
the discretization provided by finite sampling of a space and the concept of quantization. We
connect the phase space uncertainty factor, h, which is a constant in physical theories, to the
resolution of the manifold provided by the finite number of samples N and a scale parameter
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FIG. 1: (a) The key steps of quantum-inspired manifold learning. (b) Graphical summary of Egorov’s
theorem, which states that the classical flow of an observable a can be recovered in the h → 0 limit of

quantum evolution of a corresponding quantum observable, Â, under certain conditions.
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FIG. 2: An application of geodesic extraction through quantum dynamics on mobility data.

ε(N), which governs the quality of the approximation of free propagation of coherent states on the
manifold. This h(ε(N)) relation is intended to set the quantization scale of the quantum system
to the resolution of the manifold provided by the sampled data V . With our choice of coherent
states as initial states, we redistribute this resolution equally between the position and momentum
degrees of freedom. From this perspective, the h → 0 limit is both the classical limit of the quantum
dynamics and also the limit where the sampled data fully covers the manifold.

Fig. 2 presents an application of our method to a real-world dataset, and demonstrates its
utility for visualization and clustering of high-dimensional data. We analyze aggregated mobility
data in the Social Distancing Metric dataset from SafeGraph Inc. This is a fine-grained dataset
that collects geolocation information from mobile devices, aggregates it at the census block level
(CBG) level. We extract a simple metric to gauge the mobility patterns of citizens: a daily stay-at-
home (SAH) fraction for a CBG that provides a measure of how curtailed mobility was within the
CBG. We performed quantum-inspired manifold learning on mobility data for the state of Georgia
(GA), and after extracting geodesic distances we embed the data in three dimensions using a force-
directed layout. The data is then clustered into 5 clusters using k-means. Fig. 2(a) shows the
embedding in 3D with the clusters indicated by colors. In addition, the average SAH fraction time
series for each cluster in Fig. 2(b) shows that the clustering is meaningful; i.e., although almost all
CBGs exhibit similar mobility patterns, and the clusters reflect different amounts of overall SAH
fraction. Finally, Fig. 2(c) shows a map of the CBGs, which clearly shows the rural-urban divide
in degree of mobility change during the pandemic; the higher SAH fraction clusters are associated
with the urban centers in GA, while the majority of CBGs in the state exhibited behavior consistent
with lower SAH fraction curves (light blue and brown clusters).
This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission

laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. SAND2021-

10773 A.
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We initiate the study of exploration/exploitation trade-offs in online learning of properties

of quantum states giving an extension of the multi-armed stochastic bandit problem to an

online quantum learning scenario. We quantify the difficulty of the learning problem with

the minimax regret and provide various lower and upper bounds.

Note: A technical version of this work can be found at arXiv:2108.13050.

Quantum algorithms for the classical multi-armed stochastic bandit problem have been proposed recently

[1, 2]. A quantum version of the Hedging algorithm, which is related to the adversarial bandit model, has also

been studied [3]. These algorithms investigate potential improvements on the respective classical bandit algorithms

when a quantum learner is given superposition access to the oracle, i.e., it can probe rewards for several arms

in superposition. Our work generalizes multi-armed bandits from a different perspective, focusing instead on the

learning theory for quantum states. In our model, which we call the multi-armed quantum bandit model, the

arms correspond to different observables or measurements, the environment is an unknown quantum state and the

rewards are given by the measurements on the unknown quantum state and distributed according to Born’s rule.

We are interested in the optimal tradeoff between exploration (i.e. learning more about the unknown quantum

state) and exploitation (i.e. using acquired information about the unknown state to choose the most rewarding

but not necessarily most informative measurement).

The model. A d-dimensional multi-armed quantum bandit is given by a set of observables A that we call

actions. The bandit lives in an environment, a quantum state ρ, that is unknown but taken from a subset Γ

of potential environments. Given access to n copies of the unknown quantum state, a learner at each round

t ∈ {1, ..., n}, chooses an observable Ot ∈ A, performs a measurement on ρ and receives a reward Xt, the outcome

of the measurement. The learner is characterized by a conditional probability distribution over the set of actions

A at each time step t that we denote πt(Ot|O1, X1, ..., Ot−1, Xt−1) and is called policy or algorithm. The policy

uses the previous rewards and observables measured in order to decide the next observable to pick from the set of

actions A. The goal of the learner will be to maximize his reward at each round.

The regret. In order to quantify the performance of the policy, we propose as a figure of merit, the cumulative

expected regret, defined as

Rn(A, ρ, π) :=
n∑

t=1

max
Oi∈A

Tr(ρOi)− Eρ,π[Tr(ρOt)]
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where ρ is the unknown quantum state, the sum is over all rounds the learner interacts with the environment,

Ot is the choice of observable by the learner at round t, and the expectation value is taken over the probability

measure induced by the policy in ρ. In order to determine how well a policy performs for a given set of density

matrices Γ, we define the worst-case regret as Rn(A,Γ, π) = supρ∈ΓRn(A, ρ, π). Moreover, in order to determine

how difficult a learning problem is for a given set Γ of environments in a worst-case scenario, the minimax regret

is defined as Rn(A,Γ) = infπ∈P Rn(A,Γ, π), where P is the set of all policies. A small value of Rn(A,Γ) means

that the learning problem is less difficult.

The main goal of our work is to give bounds on the minimax regret in terms of the number of rounds n and

the dimension of the Hilbert space d for different sets of environments and actions. Specifically, we will focus on

mixed states (Γ = Sd) and pure states (Γ = S∗d). For the lower bounds we use information theoretical techniques,

focusing on finding environments that perform ”bad” for all policies. For the upper bounds we use an algorithmic

approach, i.e, try to find an algorithm that minimizes the regret and perform the regret analysis.

Results. We summarize our main results in Table I. For the case of mixed states environments and discrete

action sets our lower and upper bounds match. For the case of continuous action sets containing all rank-1

projectors our upper and lower bound match in terms of the number of rounds n but there is a gap in the

dimension of the system d2. For the case of pure states environments and action set A containing all rank-1

projectors the regret can be expressed as Rn =
∑n

t=1

(
1
2‖ρ−Πt‖1

)2
where ρ = |ψ〉〈ψ| is the unknown pure state

and Πt ∈ A the projector at time step t. This regret now has a resemblance with the regret in online learning of

quantum states since it is a natural loss function for our estimate Πt of the state ρ. We are not able to provide a

non-trivial lower bound for this setting and pose this as an open question. However for this case we consider an

alternative version of the regret called trace distance regret and defined as R̃n(A, ρ, π) := 1
2

∑n
t=1 Eρ,π ‖ρ − Πt‖.

The lower and upper bounds for this setting with trace distance regret does not match but suggest that we can find

a better algorithm such that the trace distance regret matches the lower bound. Also we provide support to the

conjecture that the standard regret for this case should grow slower than O(
√
n) if we find a suitable algorithm.

Discrete Continous

Generic Arm-limited Dimension-limited (all rank-1 projectors)

Γ = Sd

Rn(A,Γ) = Ω(
√
n) Rn(A,Γ) = Ω(

√
kn) (k < d2) Rn(A,Γ) = Ω (d

√
n) Rn(A,Γ) = Ω (

√
n)

Rn(A,Γ) = Õ(
√
n) Rn(A,Γ) = Õ(

√
kn) Rn(A,Γ) = Õ (d

√
n)

Rn(A,Γ) = Õ(d2
√
n)

Γ = S∗
d

R̃n(A,Γ) = Õ(n
2
3 ), (d = 2)

Rn(A,Γ) = Ω (
√
n) (d = 2, k = 3) R̃n(A,Γ) = Ω (

√
n)

TABLE I. Scaling of the minimax regret in terms of the number of rounds, n, dimension of the Hilbert space, d, and number

of actions, k (for discrete action sets). We differentiate between arm-limited action sets (the number of arms is smaller than

the degrees of freedom in the quantum state space) and dimension-limited (the number of arms can be arbitrary large).
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Parametrized quantum circuits for

reinforcement learning

Sofiene Jerbi, Andrea Skolik, Casper Gyurik, Simon C. Marshall,
Hans J. Briegel, Vedran Dunjko

Abstract

We propose two hybrid quantum-classical reinforcement learning models,
which we show can be effectively trained to solve several standard bench-
marking environments. Moreover, we demonstrate and formally prove the
ability of parametrized quantum circuits to solve certain learning tasks that
are intractable to classical models, under widely-believed complexity theo-
retic assumptions.

Deep neural networks have had a profound impact on the field of reinforcement learn-
ing by recently achieving unprecedented performance in challenging decision-making
tasks [1–4]. Almost in parallel, in the world of near term quantum computers, the idea
that limited quantum computations, called parametrized quantum circuits [5–7] or quan-
tum neural networks [8], could be used as building blocks of hybrid quantum-classical
machine learning systems started gaining increasing traction. Such hybrid systems have
already shown the potential to tackle real-world tasks in supervised [9, 10] and gener-
ative learning [11, 12], and recent works have established their provable advantages in
special artificial tasks [6, 13–15]. Yet, in the case of reinforcement learning, which is
arguably most challenging and where learning boosts would be extremely valuable, no
proposal has been successful in solving even standard benchmarking tasks, nor in show-
ing a theoretical learning advantage over classical algorithms. In this work, we achieve
both. We find numerically that shallow quantum circuits acting on very few qubits are
competitive with deep neural networks on well-established benchmarking environments.
Moreover, we demonstrate, and formally prove, the ability of parametrized quantum
circuits to solve certain learning problems that classical models, including deep neural
networks, cannot, under the widely-believed classical hardness of the discrete logarithm
problem. This constitutes clear evidence of the power of quantum learning agents and
suggests that important reinforcement learning applications such as robotics [16], biol-
ogy [17], or healthcare [18], can be meaningfully impacted by quantum machine learning.

This abstract summarizes two of our works, both available on arXiv [19, 20].
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Structural risk minimization for quantum linear classifiers

Casper Gyurik, Dyon van Vreumingen, and Vedran Dunjko

Abstract

We provide new insights into optimally tuning parameterized quantum circuit
based machine learning models by balancing the model’s complexity against its success
at fitting trainingdata (called structural risk minimization). Specifically, we theoreti-
cally quantify how its expressivity and empirical performance depend on the rank and
Frobenius norm of the observables measured.

Link to full paper: https://arxiv.org/abs/2105.05566

Quantum machine learning (QML) models based on parameterized quantum circuits
are often highlighted as candidates for quantum computing’s near-term “killer applica-
tion”. However, the understanding of the models’ ability to capture correlations in train-
ing data, and its ability to generalize to unseen data is still in its infancy. In our work
we investigate these topics for a widely studied family of QML models based on pa-
rameterized quantum circuits, which includes the two prominent models introduced by
Havĺıček et al. [1], and Schuld and Killoran [2]. We use tools from statistical learning the-
ory to better understand the empirical and generalization performance of these models. In
particular, our objective is to study how to tune certain parameters of the QML model to
balance between its training accuracy and generalization performance – a principle which
is often referred to as structural risk minimization – in order to achieve the optimal per-
formance in practice. To do so, we investigate two widely utilized complexity measures –
i.e., the VC dimension and fat-shattering dimension – of the QML models, which closely
captures the generalization performance of these models. In particular, we establish upper
bounds on these complexity measures that explicitly depend on certain parameters of the
QML model, by exploiting their relationship to linear classifiers (a well understood family
of classical models). Finally, by utilizing this explicit dependence of the upper bounds on
the model parameters, we devise methods that balance the empirical and generalization
performance of these models, enabling the models to perform better in practice.

Let us more precisely introduce the QML model that we study. First, datapoints x are
encoded into quantum states ρ(x). This can for instance be achieved using a parameterized
quantum circuit U via the mapping x 7→ ρ(x) = |Φ(x)〉 〈Φ(x)|, where |Φ(x)〉 = U(x) |0〉. In
our work we will not be concerned about the details of this encoding – which is extensively
studied elsewhere – but we draw our attention towards optimally tuning the subsequent
step in the model. After having encoded the data into a quantum state, an observable O
chosen from a predefined family of observables O is measured, and depending on whether
the expectation value lies above of below a threshold d a label +1 or −1 is assigned. In
short, the family of quantum classifiers is given by

C(O) =
{
cO,d(x) = sign

(
Tr
[
Oρ(x)

]
− d
) ∣∣∣ O ∈ O, d ∈ R

}
.

This includes the two models introduced by Havĺıček et al. [1], and Schuld and Killoran [2],
as the family O can correspond to the observables implementable using a parameterized
quantum circuit followed by measurement in the computational basis and postprocessing
of the outcome∗, or the observables that lie in the span of ρ(x) for training examples x†.

∗Called the quantum variational classifier [1], or the explicit approach [2].
†Called the quantum kernel estimator [1], or the implicit approach [2].19



For our first result, we show that the VC dimension of the family of quantum classifiers
depends on the dimension of the sum of the images of the observables. Specifically, we
prove the following proposition.

Proposition 1. VC
(
C(O)) ≤ r2 + 1, where r = dim

(∑
O∈O ImO

)§.

While this bound it not useful for arbitrary ansatze used in the explicit approach (also
called the quantum variational classifier), we can design ansatzes that allow us to directly
control the upper bound on the VC dimension by varying the rank of the measurement
after the parameterized quantum circuit. In particular, we come up with ansatze for
which we can control the upper bound on the VC dimension – and thus the generalization
performance of the model – by varying the number of computational basis states upon
which the final measurement projects.

For our second result, we show that the fat-shattering dimension of the family of
quantum classifiers depends on the Frobenius norm of the observables. Specifically, we
prove the following proposition.

Proposition 2. fatC(O)(γ) ≤ O
(
η2

γ2

)
, where η = maxO∈O ‖O‖F .

In particular, the above proposition establishes that the fat-shattering dimension – and
thus the generalization performance of the model – can be controlled by varying the
Frobenius norm of the observables.

In our remaining results, we study the influence that the above model parameters (i.e.,
the quantity r in Proposition 1 and η in Proposition 2) have on the empirical performance
of the model. First, we show that quantum models that use high-rank observable can
achieve strictly smaller training errors than quantum models that use low-rank observables.
Specifically, we prove the following proposition.

Proposition 3 (informal). (i) Any set of examples that can be correctly classified using
a low-rank observable can also be correctly classified using a high-rank observable.

(ii) There exist sets of examples that can only be correctly classified using an observable
of at least a certain rank.

Secondly, we show that by varying the rank of the observables from 1 up to 2n, we
interpolate between the expressivity of linear classifiers on R2n up to the expressivity of
linear classifiers on R4n . Specifically, we prove the following proposition.

Proposition 4 (informal). Let Or denote the set of n-qubit observables of rank ≤ r. Then,
we have the following sequence of inclusions on the expressivity of classifier families

linear classifiers on R2n ⊆ C(O1) ( C(O2) ( · · · ( C(O2n) ⊆ linear classifiers on R4n .

Finally, we show that quantum models that use observables with large Frobenius norms
can achieve strictly larger margins (i.e., empirical quantities measured on a set of train-
ing examples that influence certain generalization bounds) compared to quantum models
that use observables with small Frobenius norms. Specifically, we prove the following
proposition.

Proposition 5 (informal). There exist a set of m examples that can only be correctly
classified with margin γ using observables of at least Frobenius norm γ

√
m.

In conclusion, by connecting our results to standard structural risk minimization the-
ory, we provide new options for optimally tuning QML models. In particular, our results
theoretically motivate two novel kinds of regularization, which is a widely used technique
to implement structural risk minimization that adds a term to the loss function which
penalizes more complex models. Specifically, we theoretically motivate regularizing the
rank (for specially designed ansatze) and Frobenius norm of the observables measured.

§Here
∑

denotes the sum of vector spaces. 20
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[1] Vojtěch Havĺıček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav
Kandala, Jerry M Chow, and Jay M Gambetta. Supervised learning with quantum-
enhanced feature spaces. Nature, 567, 2019.

[2] Maria Schuld and Nathan Killoran. Quantum machine learning in feature Hilbert
spaces. Physical review letters, 122, 2019.

21



Graph neural network initialisation for quantum approximate optimisation

Nishant Jain1, Brian Coyle2, Niraj Kumar2, and Elham Kashefi2,3

1 Indian Institute of Technology, Roorkee
2School of Informatics, University of Edinburgh, EH8 9AB Edinburgh, United Kingdom

3Laboratoire d’Informatique de Paris 6, CNRS, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
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Abstract

Approximate combinatorial optimisation is a promising application area for both near-term, and fault-
tolerant quantum computers. The quantum approximate optimisation algorithm (QAOA) is one of the foremost
algorithms which is suitable to run on noisy intermediate-scale quantum devices, and has seen promising
results. In this work, we address two important ingredients in the QAOA for solving the canonical Max-Cut
problem. The first is in the initialisation of the circuit parameters, so called ‘warm-starting’. Good warm-
starting techniques are important to improve the performance and convergence of the algorithm. To this end,
we propose graph neural networks (GNNs) for warm-starting the QAOA. This approach has a number of
advantages over previous works, in particular, it significantly speeds up initialisation over graph instances, and
is capable of generalisation over both problem instance and graph size.

Extended Abstract

In the last several years, there has been tremendous progress in the search for applications for near-term quantum
computers, dubbed noisy intermediate-scale quantum (NISQ) technology [1]. Among the forerunners for such
use cases are variational quantum algorithms (VQAs) which began with the variational quantum eigensolver [2]
and the quantum approximate optimisation algorithm (QAOA) [3]. In the wake of these, many new algorithms
have been proposed tackling problems in a variety of areas [4]. The primary workhorse in such algorithms is
typically the parameterised quantum circuit (PQC).

In this work, we focus on one particular VQA, the QAOA, used for approximate discrete combinatorial
optimisation, the canonical example of which is Max-Cut on a graph. Here, one aims to partition graph nodes
into two sets which have as many edges connecting them as possible. Discrete optimisation problems such as
Max-Cut are hard to solve (specifically NP-Hard) and accurate solutions to such problems take exponential time
which is generally not feasible. While it is not believed quantum computers can solve such problems efficiently,
it is hoped that quantum algorithms such as QAOA may be able to outperform classical algorithms by some
benchmark. Here, we specifically focus on the initialisation of the algorithm, which has shown to have a huge
impact on performance [5, 6]. We propose a method to warm-start the algorithm based on using graph neural
networks (GNNs), which are powerful neural network architectures suited to dealing with graph-specific data [7].
We demonstrate how using GNNs enables high quality solutions, which are generalisable over both problem
instance and graph size. Furthermore, once trained, they provide a much faster means of producing initial
starting points when compared against previous work [5] using the celebrated Goemans-Williamson algorithm
and continuous relaxations of the original Max-Cut problem. We compare against this approach, and also another
recent method based on Trotterised quantum annealing (TQA) of [6].
Results We provide numerical implementation of the above proposed method for GNN initialisation of QAOA.
One of the key important quantities relevant for benchmarks is the approximation ratio, r. This measures the
quality of our Max-Cut solution and given by:

r =
Approximate cut value

Optimal cut value
(1)

Due to the inherent hardness of the Max-Cut problem, we do not believe it is possible for a polynomial time
algorithm to achieve r to be arbitrarily close to 1, which would indicate an ideal solution. Recall that the GW
algorithm above is a 0.88-approximation algorithm, which means it is guaranteed to produce a cut with a value
of r no less than ≈ 0.88.
Graph neural network versus the GW algorithm For the GNN, we use unsupervised training and an
architecture similar to [8]. We benchmark the GNN approach to the GW algorithm directly in Fig. 1a by
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Figure 1: Comparison of GNN initilisation to other techniques.

fixing the number of qubits and changing the QAOA depth. Both methods have comparable performance with
the GNN approach being able to generate solutions which are between 85− 90% the quality of those generated
by the GW algorithm. However, if then examine Fig. 1b, then the tradeoff becomes apparent. With a small
sacrifice in solution quality, the GNN (once trained) is able to generate candidate solutions significantly faster
than the GW algorithm, since the GW algorithm must be run separately for each graph instance. The inference
time for the GNN is approximately linear, whereas the GW algorithm behaves as some higher degree polynomial
(numerically estimated to be n3.5 in [9]).

Note that the results have been plotted and the QAOA run for a low qubit number (n < 25), which is
primarily due to the inherent overhead in the classical simulation of quantum computation. However, it has been
numerically verified by [8] that the GNN only continues to improve in quality with increasing graph size (and
corresponding qubit number), up to values of 300 nodes or more, even outperforming the GW algorithm at scale.
As such, we only expect the GNN approach to improve over the GW algorithm for warm-starting QAOA both
in running time, and in solution quality as larger quantum computers become available. We finally compare
the GNN initialisation technique against all other techniques in Fig. 1c. We compare against the warm-starting
technique using SDP relaxations of [5] (‘Warm-start’), and the trotterised quantum annealing (‘TQA’) based
approach of [6]. We also add a random (‘Cold-start’) initialisation of the parameters as benchmark example.

Train size
Test size

8 10 12 14

6 0.91 0.93 0.89 0.89

8 0.93

10 0.93

12 0.89

14 0.96

Table 1: Value of approximation ratio, r, as a function of training and test graph size. Rows correspond to the
graph size on which the model was trained, and the columns correspond to the graph size used for testing.

Generalisation Capabilities of GNNs Here we test the ability of the GNN to generalise in initialising QAOA
instances across different problem size. To do so, we train the GNN on small graph instances, and then directly
apply it to produce an initialisation for larger instances. We test this for examples of between 6 to 14 nodes
in Table 1. Here, we see that training the GNN on small problem instances still is able perform comparably well
on large ones. This is a feature which is not available in other initialisation techniques. For the sizes we test, we
observe an approximation ratio of at least than 89%, even when only training on a graph half the size of that to
be tested.
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Abstract: In this work, we provide the first practical and experimental implementation of a quantum-
classical generative algorithm capable of generating high-resolution images of handwritten digits with
state-of-the-art gate-based quantum computers. Pre-print: arXiv:2012.03924.

In the last decades, machine learning (ML) algorithms have significantly increased in importance and
value due to the rapid progress in ML techniques and computational resources [1, 2]. However, even
state-of-the-art algorithms face significant challenges in learning and generalizing from an ever increasing
volume of unlabeled data [3–5]. With the advent of quantum computing, quantum algorithms for ML arise
as natural candidates in the search of applications of noisy intermediate-scale quantum (NISQ) devices,
with the potential to surpass classical ML capabilities [6]. Generative ML is one of the most exciting
and challenging frontiers in machine learning and among the top contenders for a quantum advantage [7].
Generative models are probabilistic models aiming to capture the most essential features of complex data
and to generate similar data by sampling from the trained model distribution. Although quantum generative
models have been proven to learn distributions which are outside of classical reach [8–10], it is not clear how
NISQ hardware, with their limited number of qubits and level of gate noise, can be best utilized. As such,
one of the main challenges that researchers in this field face today is applying and scaling quantum models
on small quantum devices to tackle real-world datasets and benchmark possible quantum enhancements.
To that end, we introduce the Quantum Circuit Associative Adversarial Network (QC-AAN): a framework
combining capabilities of NISQ devices for generative modelling with classical deep learning techniques to
learn relevant full-scale data sets (see Figure 1). The framework applies a Quantum Circuit Born Machine
(QCBM) [11] to model and re-parameterize the prior distribution of a Generative Adversarial Network
(GAN) [12]. This quantum-classical framework exploits the success of GANs in achieving impressive
results on high-dimensional datasets, as well as the known dimensionality-reduction capabilities of deep
neural networks [7, 13] to implement a quantum generative model as a compact and vital component of the
overall algorithm.

FIG. 1. Schematic description of our QC-AAN framework where the prior of a GAN is modelled by a multi-basis
QCBM, which is trained on the latent space distribution during training of the Discriminator.

∗ alejandro@zapatacomputing.com
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FIG. 3. Left: Quantitative comparison between DCGANs with 16 bit prior distribution and our 8 qubit QC+o/t-AAN algorithm. The exper-
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els on the IonQ device. The QC+o-AAN model achieves a maximal Inception score of over 9.4 while the QC+t-AAN scores over 9.5 with
overall better diversity.

warm start such that the prior distribution is uniform and thus
QC-AANs and DCGANs are equivalent at the beginning of
training. This initialization should additionally avoid compli-
cations related to barren plateaus [32]. For more information
on the quantum circuit ansatz and training of the QCBM, we
refer to Appendix B and Appendix G. To quantitatively as-
sess performance, we calculate the Inception Score (IS) (see
Appendix I) which evaluates the quality and diversity of gen-
erated images in GANs. The IS is high for a model which pro-
duces very diverse images of high-quality handwritten digits.

Fig. 2 shows results of handwritten digits generated by
our models. For each model type, we pre-selected the best-
performing models in terms of the IS and chose a single rep-
resentative based on quality and diversity of the images for a
human observer. The generated digits themselves are random
subsamples of the selected models. For details on the training
parameters of the QCBM and the neural networks, we refer
to Appendix F and Appendix G. It is apparent that all mod-
els presented here can achieve good performance and output
high-resolution handwritten digits. In a quantitative evalua-
tion of average model performance (see Appendix E), we see
that the 8 qubit QC-AAN without multi-basis technique typ-
ically does not outperform comparable 8 bit DCGANs under
any of the hyperparameters explored. For low-dimensional
priors in general, a uniform prior distribution seems to yield
optimal training for our GANs. In contrast to that, both multi-
basis QC-AAN models, the QC+o-AAN and the QC+t-AAN,
generate visibly better images and achieve higher IS than the
8 bit and 8 qubit models without additional basis samples. In
fact, Fig. 3 shows that, with an average IS of 9.28 and 9.36,
respectively, both multi-basis models outperform the 16 bit
DCGAN with an average IS of 9.20.

This is a remarkable result, suggesting that an 8 qubit
multi-basis QCBM does not require full access to a 16 qubit
Hilbert space to outperform a 16 bit DCGAN. Another
key observation is that the trained-basis approach generally
enhances the algorithm even more compared to the fixed

orthogonal-basis approach.

To provide final confirmation that the QC-AAN framework
is fit for implementation on NISQ devices, we train both
QC+o/t-AAN algorithms on a quantum device from IonQ
which is based on 171Yb+ ion qubits. For more information
on the device, we refer to Fig. 1, Appendix A, and Ref. [33].
The experimental results for the training on hardware can be
viewed in Fig. 3. To the best of our knowledge, this is the first
practical implementation of a quantum-classical algorithm
capable of generating high-resolution digits on a NISQ device.

With as few as 8 qubits, we show signs of positively in-
fluencing the training of GANs and indicate general utility
in modelling their prior with a multi-basis QCBM on NISQ
devices. Learning the choice of the measurement bases
through the quantum-classical training loop, i.e. our QC+t-
AAN algorithm, appears to be the most successful approach
in simulations and also in the experimental realization on
the IonQ device. This is a great example of how quantum
components in a hybrid quantum ML algorithm are capable
of effectively utilizing feedback coming from classical neural
networks and a testament to the general ML approach of
learning the best parameters rather than fixing them. Unlike
many other use-case implementations of quantum algorithms
on NISQ devices, our models do not underperform compared
to noise-free simulations. It is reasonable that significant
re-parametrization of the prior space, paired with a modest
noise floor, provide GANs with an improved trade-off
between exploration of the target space and convergence to
high-quality data.
[moved up:]Our QC-AAN framework also extends flexibly
to more complex data sets such as data with higher resolution
and color, for which we expect refinement of the prior
distribution to become more vital for performance of the
algorithm. Besides extending to these more challenging data
sets, we could adapt the learning strategy of the quantum

FIG. 2. Left: Quantitative comparison of the QC-AAN against a comparable classical deep convolutional GAN
(DCGAN). The experimental realization on the IonQ device includes complete implementation of the multi-basis
QCBM on hardware. Right: Images of handwritten digits generated by the experimental implementation of the QC-
AAN models on the IonQ device with fixed orthogonal (+o) and trained basis measurements (+t).

The QCBM is a circuit-based generative model which encodes a probability distribution over binary
data in the measurement probabilities of a quantum wavefunction. Notably, it can be implemented on most
NISQ devices [14–17]. By virtue of being gate-based, QCBM wavefunctions can be measured in multiple
bases which can consequently enhance the QC-AAN by providing it with non-classical prior distributions.
We call this the multi-basis technique for the QCBM where pre-rotations for quantum measurements can
either be trained or fixed to a specific angle, for example to measure in a locally orthogonal basis.
On the classical side, GANs are one of the most popular recent generative machine learning frameworks
able to generate remarkably realistic images and other data. In a GAN, a generator G and a discriminator
D are trained according to an adversarial loss function with the goal that G learns to generate data which
for D are indistinguishable from the real data. The input to G is called the Prior, which is conventionally
a continuous uniform or normal distribution with zero mean, although discrete Bernoulli priors have also
been shown empirically to be competitive [18]. The AAN framework [19] aims at learning an informed prior
distribution which actively takes part in the training of the GAN and can help avoiding common pitfalls of
the delicately balanced adversarial game, such as mode collapse and non-convergence [12, 18]. In the QC-
AAN, the Prior is modelled by a QCBM which is dynamically trained on the so-called latent space of the
Discriminator: a deep and low-dimensional layer reflecting a strongly condensed representation of the data.

We numerically simulate the performance of the QC-AAN with an 8 qubit QCBM using the multi-basis
technique and demonstrate an enhancement on the MNIST dataset of handwritten digits, as compared to
a comparable classical GAN with strictly the same network architecture. This emphasizes that the choice
of a good prior for a deep generative learning task, a topic which is starkly under-studied in the classical
ML community, can lead to significant improvements with as few as 8 qubits. Finally, to demonstrate the
readiness of our framework, we train the QC-AAN with an experimental implementation of 8 qubits on
IonQ’s ion-trap quantum computer. To the best of our knowledge, Figure 2 depicts the first practical imple-
mentation of a quantum-classical algorithm capable of generating high-resolution digits on a NISQ device.
Unlike many other use-case implementations of quantum algorithms on NISQ devices, our models do not
under-perform compared to noise-free simulations. This indicates that significant re-parametrization of the
prior space, paired with a modest noise floor, provide GANs with an improved trade-off between explo-
ration of the target space and convergence to high-quality data. The QC-AAN framework extends flexibly
to more complex data sets, such as data with higher resolution and color, and thus enables a trajectory to-
wards understanding and realizing potential enhancements of state-of-the-art machine learning algorithms
by quantum computers.
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Abstract

Quantum Physical Unclonable Functions (QPUFs) have been proposed as a way to identify and authen-
ticate quantum devices. In this work we examine classical readout QPUFs based on single qubit rotation
gates and show that they are not secure — by demonstrating a Machine Learning based attack on a com-
mercial quantum device.

Secure attestation of cloud computing resources has been in the focus of research to create trust in the
cloud, since through it, cloud computing customers are able to ensure that they are provided the correct and
trusted underlying hardware [1]. Trusted hardware is especially important for quantum computing, since
the high sensitivity to noise in low-grade machines can have detrimental effects on vital calculations. It is
therefore an important endeavour to ensure that quantum computing cloud customers can authenticate their
quantum devices, to lower the risk of making extensive business decisions based on corrupted results.
In the classical world, Physical Unclonable Functions (PUFs) have been proposed as a way to identify
and authenticate electronic devices [2, 3, 4]. Recently, Quantum PUFs (QPUFs) have emerged that aim to
achieve the same goals for quantum devices. The primer of Skoric [5] introduced the concept of Quantum
Readout PUFs (QR-PUFs). Shortly after, QR-PUFs were generalized and formalized in the framework of
Doosti et al. [6] and rigorously analyzed by Arapinis et al. [7]. While these protocols require a QRAM and a
quantum channel between the verifier and prover to exchange quantum states, the recent additions by Phalak
et al. [8] use only classical communication to provide a secure fingerprint for quantum devices.
In this work, we adapt the QPUF framework of [6] in order to define the category of Classical Readout
Quantum PUFs (CR-QPUFs) where verifier and prover communicate classically to authenticate a quantum
device. Let us consider the challenge and response scheme ~rout = Eid(Uin(~θ)), where ~rout is the response,
Eid is the empirical average of the qubits evaluated on the quantum computer with identity id and Uin(~θ) is
the parameterized challenge unitary. Essentially, the expectation value with finite samples Eid depends on
device-specific properties, most notably noise such as gate errors, decoherence and crosstalk. The goal of
the CR-QPUF is then to leverage this systematic noise and imperfections to create an unforgeable fingerprint
of the quantum device.

We proceed with examining the Hadamard CR-QPUF from [8], where a challenge is defined as

Uin(~θ) :=
n⊗

i=1

HRY (θi).

We identify essential security flaws in the Hadamard CR-QPUF, which, as we argue, stem from the
absence of entanglement, therefore allowing potential attackers to model the QPUF behaviour by learning
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Figure 1 – (a) Measured responses rout and learned model functions for two qubits on ibmq_belem. The points are used to
learn the low degree polynomials (lines) and predict unknown challenges. The qubits exhibit different characteristics depending on θ,
however their expectation value can be accurately learned. (b) Multi-dimensional extension of the Hadamard CR-QPUF for chains of
X and Y rotations. The measured responses (black dots) are used to learn the 2D polynomial (surface). (c, d) Attack results for the
base and multi-dimensional case respectively. The boxplots show the Hamming distance (Hd) of 15 response signatures in a holdout
challenge-response database and their mean. The red dots show the average Hd of the respective predicted responses (obtained through
the model functions). Predicted responses get accepted if the Hd is less than or equal to the mean intra Hd in the holdout database.

the characteristics of the individual qubits. We implement the Hadamard CR-QPUF on the publicly avail-
able 5-qubit ibmq_belem superconducting chip [9] and show that responses can be predicted by learning
bounded-degree polynomials [10, 11]. We therefore numerically demonstrate the insufficient security of the
Hadamard CR-QPUF as well as natural extensions thereof, where multiple sequential single-qubit rotations
are performed. Specifically, in Figure 1 we show the measured responses, learned models and results of the
authentication protocol for the one dimensional case and even the multidimensional extension.

Our contributions are concluded with an in-depth discussion of our findings and future CR-QPUF design
considerations. In the worst case, to learn the density matrix of an unknown entangled quantum state, an
exponential number of measurements are required. However, since the Hadamard CR-QPUF does not use
entanglement, the QPUF security reduces to that of one single qubit. This means that an attacker only needs
to simulate or predict the behaviour of one qubit at a time. In addition, since the challenges Uin(~θ) are fixed
in their structure, the challenge space is effectively reduced to the rotations ~θ. Hence, one is possibly missing
out on leveraging that the concrete structure of random challenges is unknown to an attacker. We believe that
these design shortcomings lead to the empirically shown insecurity of the Hadamard CR-QPUF. While the
systematic noise present in quantum computers could potentially be used to create an unforgeable fingerprint
of the devices, the contradicting incentives, from the one side of quantum computer manufacturers, who want
to eliminate systematic noise, and on the other side of end users, who want to use the systematic noise to
identify the quantum devices, might hinder the application of QPUF schemes to industrial cloud providers.
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